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Abstract:
A wedge in a flat or curved ordered space can be defined with help of two light-rays passing

through a point and the double-cones spanned between these light-rays. Only special manifolds

have the property that the space-like complement of a wedge is again a wedge as in the flat

situation. Such manifolds will be called wedge-causal. Starting from a wedge and its associated

von Neumann algebra then its properties will be investigated in the flat and the wedge-causal

situation. It will be shown, that in the flat situation, all local algebras are of von Neumann

type III, and that they are all of the same Connes-von Neumann-type III1 . Here the types can

be determined, because the modular group of the wedge-algebra acts local.

For the situation of the Minkowski space we will show how to construct from the wedge-

algebra the algebra of the double cones. In addition we will show how to construct from a

double-cone algebra the algebra of larger double cones and of the wedge. For this we will use

either the translations or the modular group of the wedge-algebra and the double cone theorem.

All these investigations are dimension independent. Moreover, we will develop new methods

determining the von Neumann and the Connes types for the wedge- and double-cone algebras.

1. Introduction

In earlier papers I investigated the sub-algebras having the same cyclic and separating
vector [1]. This method was extended in [2] including super-algebras and all the algebras
obtained by iterating these procedures. I started this investigation since I hoped that this
method could be used for local quantum field theory, where all the local algebras have
the same cyclic and separating vector also. But it turned out that one obtains by this
procedure too many algebras in order that it could be useful for physics. Moreover, these
algebras one obtains are algebras of different Connes-von Neumann types. This is due to
the split-property [3]. One even does not know how to select algebras with the same von
Neumann type.
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Discussing this situation with D. Buchholz, he suggested to start with the algebras of
wedges and to derive from this all the local algebras. A guide to such enterprise would be
the paper of G. Lechner [4] who had solved this problem for the two-dimensional case. We
will look at this problem for the higher-dimensional situation.

As usual I started with a separable Hilbert space H on which there exists a unitary
representation of the translation group of IRd fulfilling the spectrum-condition and which
possesses a unique invariant vector Ω. In section 2 the wedge-algebra will be defined. In
addition it will be assumed that Ω is cyclic and separating for the wedge-algebra. Using
this input we will define the algebras for the space-like cylinders and the double-cones.
The last algebra will be defined without Lorentz- or rotation-transformations. The only
input is the geometrical structure of the Minkowski space. Having defined these algebras
we will investigate their properties, in particular the Reeh-Schlieder theorem [5] of these
algebras which implies that Ω is also cyclic and separating for these algebras.

Section 3 we start with the algebra of a cylinder or with that of a double cone, and
show how to re-construct the algebra of larger cylindres or double cones. With the same
method the algebra of the wedge can be constructed. To do this we will use the half-
sided translation [6] and we will use techniques of analytic functions of several complex
variables, which can be used because of the spectrum condition for the translation. Out of
this technique we take the double-cone theorem [7],[8]. Finally we will look in section 3 at
the centre of the wedge algebra and show that it coincides with that of the global algebra.

In section 4 we look at the type question of local algebras. Although this has already
been solved by Fredenhagen [9], using a result of R. Longo [10], who derived the Connes-
von Neumann type for the wedge. I thought it would be useful to have a new look at this
problem and to develop new techniques. This is desirable since the paper of Fredenhagen
[9] uses additional properties. For our investigation we develop new methods to find the
invariant S by starting directly with Connes’ definition [11] of his invariant S. We will
show that as well the algebras of the space-like cylinder as that of the double-cones have
the Connes-von Neumann type III1. I hope that the results of section 2, 3, and 4 are useful
for the construction of interacting quantum fields in higher dimension. A similar result
has been obtained by Araki [12] but by different methods.

In the fifth section we wont to apply the methods developped for the flat situation to
certain curved spaces. We have in mind ordered spaces which are globally hyperbolic. As
we know from section 2, a wedge can be defined by giving two light-rays through one point
p and the double-cones, which can be spanned between the positive and negative branch
of the two light-rays. On the other hand in spaces carrying an order, one can define the
space-like complement of any set. The wedge-causal spaces are defined as spaces where the
space-like complement of a wedge is again a wedge, as in the flat case. Most manifolds
do not have this property as the example of the Rindler wedge. As we will see all results
valid in the flat case, which are not using the translations and the structure of the modular
group of the wedge, are true here. An example of such situation is the de Sitter space.

At the and of this paper we add some final remarkes and list some problems.
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1.1. Assumptions and notations:

a) Let H be a separable Hilbert space. Assume on H exists a continuous unitary represen-
tation of the translation group T (a) of the d-dimensional Minkowski space.
α Moreover, assume there exists a unique unit-vector Ω ∈ H with the property T (a)Ω =

Ω, ∀a ∈ IRd.
β In addition assume that the spectrum of the translation group T (a) is contained in

the forward light-cone V +.

b) Let M be a von Neumann algebra acting on H. We say Ω ∈ H is cyclic and separating
for M if MΩ and M′Ω are dense in H. The algebra M′ denotes the commutant of M. In
this situation exists by the Tomita-Takesaki theory [13,14] a modular operator ∆ which is
non-negative and a modular conjugation J fulfilling

∆Ω = Ω, JΩ = Ω,

Ad∆itM = M, JMJ = M′

J∆itJ = ∆it, J∆
1
2AΩ = A∗Ω, ∀A ∈ M

c) Let U(s) be a one-parametric unitary group. We say U(s) is a (±)-half-sided translation
for M if the following conditions are fulfilled:

U(s)Ω = Ω,

U(s) has a positive spectrum

AdU(s)M ⊂ M, for(±)s ∈ IR+

If U(s) fulfils these conditions then there exist between the modular group of M and U(s)
the following relations:

Ad∆itU(s) = U(e(∓)2πts),

JU(s)J = U(−s).
(1.1)

These results can be found in [6].

d) Denote by V + the forward light-cone.
α Let ℓ1 6= ℓ2 be two light-rays belonging to ∂V + then the wedge W (ℓ1, ℓ2) is defined

by the formula:

W (ℓ1, ℓ2) = {a1ℓ1 − a2ℓ2 + â, a1, a2 > 0, â ⊥ (ℓ1, ℓ2)}

β If t0 ∈ V + is a fixed time-like vector with t20 = 1 and ℓ ∈ ∂V + then we denote by ℓ′

the light-like vector in the intersection of ∂V + with the two-plane spanned by ℓ and
t0.
Let the space-like vector a1, a

2
1 = −1 belong to the two-plane spanned by (t0, ℓ). In

this case we set
a+ = t0 + a1, a

− = t0 − a1.

Now we identify ℓ with a+ and ℓ′ with a−. In this special situation the two-dimensional
wedge W2 = W (ℓ1, ℓ2) ∩ IR2(t0, a1) can be written as

W2 = {t, a; |t| ≤ a; t = tt0, a = aa1}.
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γ Let M(W (ℓ1, ℓ2)) be the algebra associated with W (ℓ1, ℓ2), then we identify the com-
mutant with the following algebra

M(W (ℓ1, ℓ2))
′ = M(W (ℓ2, ℓ1)),

but only if Ω is cyclic and separating for M(W (ℓ1, ℓ2)).

Locality and the Reeh-Schlieder theorem [5] imply that Ω is cyclic and separating for
M(W2(ℓ1, ℓ2)) and for sub-algebras which are defined by intersections of shifted wedge-
algebras, as double-cones and cylinders.

Next we look at special situations described in 1.1. and some applications. We start with
the two-dimensional wedge.

1.2. Modular group of the wedge algebra in two dimensions and the translation

group

Let M(W2) be the von Neumann algebra associated with W2. If Ω is cyclic and separating
for M(W2), then T (λ+a+) is a (+)-half-sided translation for M(W2) and T (λ−a−) is
a (−)-half-sided translation for the same algebra. For simpler writing we set ∆ for the
modular operator of M(W2). Now we obtain:

Ad ∆itT (λ+a+) = T (e−2πtλ+a+),

Ad ∆itT (λ−a−) = T (e2πtλ−a−).
(1.2)

Notice that the sign in the exponential is opposite to the sign of the half-sided translation.
Now let a be a vector in the two-dimensional wedge, then the two equations imply:

Ad ∆itT (a) = T (Λ2(t)a)

with Λ2(t) a Lorentz transformation

Λ2(t) =

(

cosh t − sinh t
− sinh t cosh t

)

. (1.2.a)

If we look at the opposite wedge W ′ = {(t, a), |t| ≤ −a} with t a multiple of t0 and a
a multiple of a1. Since the modular group of the commutant coincides with that of the
algebra, we obtain for a ∈W ′ the same as for W :

Ad∆itT (βa+) = T (e−2πtβa+)

Ad ∆itT (αa−) = T (e2πtαa−)
. (1.3)

This implies for a ∈ W ′
2 again

Ad ∆itT (a) = T (Λ2(t)a).

New features are obtained for the forward- and backward-light-cone, provided we are deal-
ing with a massles theory, where the forward- cone is the support of an algebra. In this
situation we obtain from (1.2) and (1.3) the same sign for a+ and a−.

Ad ∆it(λa±) = T (e−2πtλa±).

4



This implies for a ∈ V +:
Ad∆itT (λa) = T (e−2πtλa).

This is a dilatation, precisely for positive t a contraction and for negative t an extension.
For V − we find:

Ad∆itT (λa) = T (e2πtλa).

Usually this result is not connected with an algebra. The only exception is the case of
massless fields. See[15].

The result (1.2.a) will be used in the next section.

1.3. One half-sided translation for different algebras

We leave the two-dimesional situation and go to the higher-dimensional case. In 1.1.d.α
we introduced for ℓ1, ℓ2 ∈ ∂V + the wedge W (ℓ1, ℓ2). If we keep ℓ1 fixed and vary ℓ2 6= ℓ1
then we obtain a family of wedges W (ℓ1, ℓi) such that T (λℓ1) is a half-sided translation for
every of the algebras M(W (ℓ1, ℓi)). But these algebras are not the only one. If we keep

ℓ1 fixed, then M(
n
∩

i=1
M(W (ℓ1, ℓi)) has again T (λℓ1) as half-sided translation. In every

of these cases we obtain Ad ∆itT (λℓ1) = T (e−2πtλℓ1), where ∆ is the modular operator
of the mentioned algebras. Let now ∆1,∆2 be the modular operators of two different of
these algebras, then we get that ∆it

1 ∆−it
2 commutes with the translations T (λℓ1). Whether

or not these unitary groups generate the whole commutant of T (λℓ1) is not known. This
is due to the fact that a modular group does not determine the algebra. In case we are
dealing with a Lorentz covariant theory the two algebras M(W (ℓ1, ℓ2)) and M(W (ℓ1, ℓ3))
are connected by a Lorentz transformation belonging to the fixed group of ℓ1.

2. Construction of the local net from the wedge algebra

We start to list the assumptions for this section.

2.1 Assumptions and notations:

1) Let t0, t
2
0 = 1 be a chosen fixed time-like direction and a1, (t0, a1) = 0, a2

1 = −1 be a fixed
space-like direction. Denote by W2 = {a = α0t0 +α1a1} with a contained in the two-space
generated by t0 and a1 and |α0| ≤ α1. If d > 2 then we set W = {W2 + ã}, ã ⊥W2.
2) By M(W ) we denote a von Neumann algebra acting on H with the property
AdT (a)M(W ) ⊂ M(W )∀a ∈ W . Moreover, Ω shall be cyclic and separating for M(W ).
M(W ′) denotes the commutant of M(W ).
2.a) Moreover, we assume that AdT (−λa1)M(W ) ∩ AdT (λa1)M(W )′ is not empty for
every λ > 0.
2.b) If the dimension is larger than 2 we require that ∩

r∈R
applied to the sets described in 2.a)

is not empty (non-empty in 2.a and 2.b) means that the intersection of the corresponding
algebras is a non-trivial algebra. R stands for the rotation-group around the time-axis.
The expression ∩

r∈R
stands for the definition of the double-cone given in assumption (3,2).

3,1) We define the algebra of the cylinder 0Zλ by the equation

M(0Zλ) = [AdT (−λa1M(W ))]
⋂

[AdT (λa1)M(W ′))]
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The upper index zero in front of Z or D indicates that the centre of these sets is located
at zero.

3,2) If the dimension d > 2, then we keep t0 fixed and vary a1 in the boundary of V +.
By this we obtain a family of wedges W (ai

1) and a family of different cylinders and their
algebras M(0Z(ai

1, λ)). Keeping λ fixed, we define the algebra of the double cone

M(0D(λ)) =
⋂

ai
1
∈∂V +

M(0Z(ai
1, λ)). (2.1)

Having introduced our notation we can start with the investigation, where we use the
assumptions and notations of 2.1. The first result is concerned with properties of the
cylinder.
4) Since we will use increasing families of von Neumann algebras, we will assume continuity
from inside for algebras based on increasing sets of the Minkowski space.

2.2. Lemma:

Denote by 0D2(λ) the restriction of 0D(λ) to the two-space generated by (t0, a1). Let
λ2 > λ1 then we get 0Z(λ1) ⊂

0Z(λ2) and 0D(λ1) ⊂
0D(λ2).

∨

b∈0D2(λ2−λ1)

AdT (b)M(0Zλ1
) = M(0Zλ2

). (2.2)

∨{M(0Zλi
)} denotes the von Neumann algebra generated by all M(0Zλi

).

Proof: First we show
∨

0≤|b|≤(λ2−λ1)

AdT (b)M(0Zλ1
) = M(0Zλ2

). (2.3)

Going to the commutant Eq. (2.3) reads

⋂

0≤|µ|≤(λ2−λ1)

AdT (µ)M′(0Zλ1
) = M′(0Zλ2

).

Because of M(0Z ′
λ) = AdT (λa1)M(W )+AdT (−λa1)M(W ′) we get Eq. (2.3). By this we

obtain the algebra of a neighbourhood of the middle axis of the double-cone 0D(λ2). The
rest is obtained by means of the double-cone theorem [7,8], implying that the boundary of
a coincidence-domain has to be space- or light-like. For the detail of the calculation see
also the proof of Thm. 3.1..

Since for every b ∈ 0D(λ2 − λ1) we obtain AdT (b)M(0Zλ1
) ⊂ M(0Zλ2

) and we find
that the left-hand-side of (2.2) is contained in M(0Zλ2

).
Next we go to double cones and obtain

2.3. Lemma:

Let λ1 < λ2 then holds:
∨

b∈0D(λ2−λ1)

AdT (b)M(0Dλ1
) = M(0Dλ2

). (2.4)
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Proof: Eq. (2.4) does not hold only for the standard wedge, but also for all other wedges
with different a ∈ ∂V +. With this notation we want to show

∨

b∈0D(λ2−λ1)

AdT (b)M(0Dλ1
) = M(0Dλ2

).

Applying Eq. (2.1) to the left-hand side of (2.2) we obtain:

⋂

a∈∂V +

∨

b∈0D(λ2−λ1)

AdT (b)0Z(a, λ1).

+Since 0D(λ1) ⊂ 0Z(a, λ1) we find that, if we interchange the intersection with the union,
the left-hand side is contained in the right-hand side. On the other hand the relation
0D(λ2) ⊂ 0Z(a, λ2) implies that the right hand side is contained in the left-hand side.
This shows that both sides coincide.

For the next result we need some notations:
The cylinders 0Z and double-cones 0D have their centre at the origin. In the future we
need cylinders and double-cones sitting in the corner of the wedge. Therefore, we set

Z(λ) =AdT (λ)0Z(λ),

D(λ) =AdT (λ)0D(λ),

and we have dropped the direction a in the cylinder.

2.4. Corollary:

The algebra of the wedge can be obtained by the following manner

∨

λ>0

M(Z(λ)) =M(W ),

∨

λ>0

M(D(λ)) =M(W ).

Proof:

We start with the cylinders Z(λ). The commutant of M(Z(λ)) consists of two wedges:

M′(Z(λ)) = M′(W ) ∪ T (2λ)M(W ),

going with λ→ ∞ we obtain the first result. For the commutant of the double-cone algebra
M′(D(λ)) we obtain the union of the wedge algebras T (2λa1)M(W ), rotated about the
point (λa1), i.e.,

M′(D(λ)) = T (λa1)
∨

r∈R

R(r)T (λa1)M(W ).
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Let h be the distance from the plane λa1 = 0. Now we look at the intersection of the hyper-
plane a1 = h with the boundary of D(λ) under the assumption h < λ, then these points
have from the a1-axis the distance

√

λ2 − (λ− h)2, for 0 < h < λ and
√

λ2 − (h− λ)2 for
λ < h < 2λ. For λ → ∞ these points tend to infinity and therefore D(λ) tends to the
wedge.

3. Consequences of half-sided translations

Recall a half-sided translation for a von Neumann algebra M with cyclic and separat-
ing vector Ω, and a group U(t) of M, such that AdU(t)M ⊂ M for either t ≥ 0 or t ≤ 0.
In the first case one speaks about +half-sided translations and in the other case about
−half-sided translations. In case of the wedge we set a± = (a1 ± a0). Then the standard
translations T (a±) fulfil the conditions for M(W ). Between half-sided translations of M
and the modular group of M exists a remarkable relation:

Ad ∆is
M(T (t)) = T (e∓2πst).

Here the minus-sign in the exponent holds for +half-sided translations and the other sign
for −half-sided translations. For the wedge algebra exist both kinds of half-sided transla-
tions, therefore, we introduce the following notation:

Λ2(t) =

(

cosh(2πt) − sinh(2πt)
− sinh(2πt) cosh(2πt)

)

. (3.1)

The lower index 2 indicates that this is the transformation of the 2-plane generated by
(a1, t0). All other components are kept fixed. For higher dimensions we write:

Λ(t)(a, â) = (Λ2a, â).

Applied to the wedge we obtain:

Ad ∆it(T (a, â)) = T (Λ(t)a, â), (a, â) ∈W. (3.2)

See[16]

For the application of the last result we use the notations introduced at the end of the last
section.

3.1. Theorem:

1) Let λ2 > λ1 then there exists t(λ2, λ1) with

Ad ∆it
WM(Z(λ1)) ⊂ M(Z(λ2)), for|t| ≤ t(λ2, λ1), with t(λ2, λ1) =

1

2π
log

λ2

λ1
.

This value means exactly that for |t| > t(λ2, λ1) the transformed set is no longer contained
in M(Z(λ2)).
2) Now holds:

∨

|t|≤t(λ2,λ1)

Ad ∆it
WM(Z(λ1)) = M(Z(λ2)).
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Proof: 1) The value of t(λ2, λ1) is determined by the tips of the transformed double cone
which has at most the value λ2. This leads to the relation e2πtλ1 = λ2.
2) Let G be the domain in W below the space-like hyperboloid of mass 2λ1 which is sitting
in D2(λ2). Moreover, let Ds be a small double-cone of radius µ < λ1 and let G1 be the set
of all b such that T (b)Ds ⊂ G. Choose two vectors ψ1, ψ2 ∈ H which are entire analytic
for T (x) and define the two functions

F+(x) = (ψ1, BAdT (x)(A)ψ2)

F−(x) = (ψ1,AdT (x)(A)Bψ2)
,

with B an operator commuting with M(Z(G)) and A an operator belonging to M(Z(Ds)).
Then F+(x) has an analytic extension into the forward tube T+ and F−(x) has an analytic
extension into the backward tube T−. In addition one has F+(x) = F−(x) for x ∈ G1.
Using the double-cone theorem (see [7,8]) one finds F+(x) = F−(x) for x ∈ Z(λ2 − µ).
Taking the limit µ→ 0 one finds B commutes with M(Z(λ2)). This shows the theorem.

3.2. Corollary:

λ1 > 0, then holds
∨

|t|>0

Ad∆it
WM(Z(λ1)) = M(W ).

Proof: For every λ2 > λ1 we obtain from Thm. 3.1

∨

|t|≤t(λ2,λ1)

Ad ∆it
WM(Z(λ1)) = M(Z(λ2)).

Taking the limit λ2 → ∞ we obtain the result.

After this we turn to the structure analysis of algebras by using:

3.3. Theorem:

The centre of the algebra of the wedge C(M(W )) coincides with the centre of the global
algebra ∨

b∈IRd
AdT (b)M(W ).

Proof: T (λa+) is a +half-sided translation for M(W ). Therefore, we know from [18]
Thm.2.4. that C(M(W )) is point-wise invariant under the action of T (λa+). Let ψ be
a vector entire analytic for T (λa+) and C ∈ C(M(W )) and A ∈ M(W ). Then vector
function F(λ) = [AdT (λa+)A,C]ψ has an analytic continuation into the upper half-plane.
Moreover, F(λ) vanishes for λ > 0 because of the condition for +half-sided translations.
Hence F(λ) vanishes for all λ ∈ IR. This means C commutes with all algebras located in
the half-space below the plane, characterized by {λa+}.

Since M(W ) is also invariant under −half-sided translation by T (λa−) all the argu-
ments we used for +half-sided translations, after suitable adaptation, can be used for this
case. Hence C ∈ C(λ)∀λ ∈ IR). This means C ∈ C(M(W )) commute with all algebras
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located in the half-space above the plane characterized by {λa−}. This means C com-
mutes with all A located everywhere, except for W ′. Since C commutes also with M(W )′

it commutes with all operators. (If there exists operators located on the boundary of W ′,
then they can be included into the commutant of C(M(W )) with help of the double-cone
theorem.)

In corollary 3.2. we have constructed larger cylinders from smaller ones by using the
modular group of the wedge-algebra. This method can be used also for double cones.

The algebra ∨
−|t|≤t(λ2,λ1)

Ad∆it
WM(Dλ1

) presents the algebra of a set, which ends at the

boundary of Dλ2
. Applying to this the double-cone theorem we obtain D(λ2). Collecting

the results of our discussion we obtain:

3.4. Theorem:

The algebra
∨

|t|≤t(λ2,λ1)

Ad∆it
WM(Dλ1

) (3.4)

coincides with M(Dλ2
).

If in Eq. (3.4) is no restriction for t we obtain the algebra of the wedge.

At the end of this section we want to look at the three-dimensional group generated
be the two dimensional translations of IR2 and the modular group of the wedge-algebra:
(t, a), t ∈ IR, a ∈ IR2,

(t1, a1)(t2, a2) = (t1 + t2,Λ2(t2)a1 + a2). (3.5)

The investigation of this group is best done in form of 3 × 3 matrices:





1 0 a1

0 1 a0

0 0 1









cosh 2πt − sinh 2πt 0
− sinh 2πt cosh 2πt 0

0 0 1



 =





cosh 2πt − sinh 2πt a1

− sinh 2πt cosh 2πt a0

0 0 1



 . (3.6.a)

For the investigation of this group, it is better to introduce light-cone coordinates ua+, va−.
With this (3.6.a) reads:





1 0 u
0 1 v
0 0 1









e−2πt 0 0
0 e2πt 0
0 0 1



 =





e−2πt 0 u
0 e2πt v
0 0 1



 . (3.6)

This is the product of the two-dimensional translation group and the one-parametric mod-
ular group. The one-dimensional sub-groups can easily be determined. One obtains





ear 0 b
a
(ear − 1)

0 e−ar − c
a
(e−ar − 1)

0 0 1



 . (3.7)
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The modular group is obtained for a = −2π and b, c = 0, while the two translation groups
are obtained for a = 0, br = u and c = 0 and the other translation for a = 0, cr = v and
b = 0.
A group of special interest is obtained for a = −2π, b = −2πu, c = 0, which reads in matrix
form





e−2πr 0 u(e−2πr − 1)
0 e2πr 0
0 0 1



 .

In terms of representations this reads

T (u(e−2πr − 1))∆ir
W .

Applying this to a vector of the form AΩ then ∆ir
WAΩ, A ∈ M(W ) has an analytic contin-

uation into the strip S(−1
2
, 0). Since the translations T (t) can be continued into the upper

complex half-plane, we see that T (u(e−2πr − 1)) can be continued into −1
2 ≤ ℑmt t ≤ 0.

Therefore, the product T (u(e−2πr − 1)))∆ir
WAΩ, A ∈ M(W ) also has an analytic con-

tinuation into the strip (−1
2 , 0). Therefore, it presents the modular group of a super-

algebra of M(W ). Writing T (u(e−2πr − 1))) = T (u(e−2πra+))T (−ua+) we obtain with
T (−ua+)M(W )Ω = M(W (u))Ω and we see that T (u(e−2πr)) must be the modular group
of M(W −u). This is a shift in the negative a+-direction. Such a situation is known from
the modular action of the global algebra in thermal states. See [18].

4. The Connes-von Neumann type of local algebras

Although this problem has been solved by Fredenhagen [9], using the result of Longo
[10] about the structure of the wedge-algebra, we will show the result by different methods.

Our subject is the question of the Connes-von Neumann type of the local algebras
under the assumption that the local algebras aew of von Neumann type III. First we
have to explain the procedure, see G.K. Pedersen [19]. Let ξ ∈ H, ‖ξ‖ = 1, then we

have to determine the support projection Eξ
M of the expectation value (ξ, .ξ) of M, i.e.,

the smallest projection in M with (ξ, Eξ) = 1. Eξ
M is the same as the projection onto

M′ξ. Then we must compute the modular operator for the algebra EMξMEMξ and its
spectrum. The invariant S(M) is obtained by the formula

S(M) =
⋂

spec∆Mξ ,

where ξ is arbitrary and ∆Mξ is the modular operator of EME. To determine S(M) we
will assume that M is a factor. This can be done without loss of generality, since we can
make an integral decomposition and afterwards re-integrate the obtained results. The first
result is:

4.1. Lemma:

Let ξ ∈ H and E ∈ M be the smallest projection fulfilling Eξ = ξ, then ξ is also cyclic
and separating for EME.
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Proof: Since EH = M′ξ we see that ξ is cyclic for EM′E in EH. On the other
hand it follows that ξ is cyclic for EME since E is the smallest projection in M with
(ξ, Eξ) = 1l.

Next we want to compare the spectra of ∆M and ∆EME . In this situation exist
partial isometries V ∈ M with V V ∗ = 1l and V ∗V = E.
Let U be a unitary operator in EME, then V UV ∗ ∈ M. On the other hand, if Û is a
unitary in M, then V ∗ÛV is a unitary in EME. This means V maps all unitaries in
EME onto all unitaries in M. Since the unitaries of a von Neumann algebra generate the
whole algebra linearly, we obtain

V EMEV ∗ = M.

Next we show:

4.2. Lemma:

The spectrum of ∆M is contained in the spectrum of V ∗∆MV.

Proof: Using the proof of [19] lemma 8.15.8 and let µ be a spectral point of ∆M

then exists for every ǫ > 0 an operator x ∈ M and a vector yǫ with ‖y‖ ≤ ǫ and ∆MxΩ =
µxΩ + yǫ. Now we obtain:

V ∗∆MV V ∗xΩ = V ∗∆MxΩ = V ∗(µxξ + yǫ) = µV ∗xV V ∗Ω + V ∗yǫ.

Since V ∈ M we get V ∗MV ⊂ EME, and since V is an isometry, we obtain V ∗MV =
EME. Moreover, EMEV ∗Ω is dense in EH. If for x′ ∈ N ′ and Ex′EV ∗Ω = 0, then we
get with Ex′E = V ∗x̂′V V ∗Ω = V ∗x̂′Ω = 0, which implies x̂′ = 0. This means V ∗Ω is also
separating for EME.

Unfortunately, the two vectors ξ and V ∗Ω do not coincide. This defect will be cured in
the next

4.3. Corollary:

For every ξ ∈ H with E support projection of (ξ, .ξ) in M we obtain, that the modular
operator of V ∗MV and EME = N are the same and hence we have

spec∆ξM = spec∆V ∗Ω. (4.1).

Proof: Since ξ and V ∗Ω both are cyclic and separating for EME we get by a result of
Connes (see [19] Prop. 8.14.11-) that the algebras (EME, IR, σξ) and (EME, IR, σV ∗Ω)
are outer equivalent. This means there is a unitary function ut with σxi(x) = utσ

V ∗Ωu∗t .
By definition of ut (see [9] 8.14.11.) one has ut → 0 for t→ ∞. Applying 1

i
d
dt

to the above
equation we obtain in the limit t→ 0

1

i

d

dt
ut|t→0 + ∆V ∗Ω +

1

i

d

dt
u∗t |t→0 = ∆ξ.

12



Since both modular operators are positive, the sum of both derivations must be selfadjoint,
and since both modular operators have the eigenvalue 0, there is no shift of the spectrum.
Therfore, both modular operators coinside.

Collecting the results obtained so far we get:

4.4. Theorem:

Let M be of von Neumann type III, then the Connes-invariant S(M) coincides with the
spectrum of the modular operator ∆M.

Proof: Since for every projection E ∈ M holds spec∆EME ⊃ spec∆M and on the other
hand one has S(M) = ∩ spec∆EME , where E runs through all projections of M, we get
the result.

Our next aim is to try to compare for two von Neumann algebras N ⊂ M their
modular operators, under the assumption that both are of von Neumann type III. We
start with some known results which we take from [1],[2]. Since (N ,Ω) ⊂ (M,Ω), we
obtain ∆N ≥ ∆M. This implies that we can form the operator valued function (see [1]).
This implies that we can form the operator function:

F (t) = ∆−it
M ∆it

N .

This function has an analytic continuation into the strip S(0, 1
2
), 0 < ℑmt t < 1

2
. This

function is continuous on the boundary and norm-bounded by 1. The operator F ( i
2 ) is

unitary, i.e., F ( i
2
)∗ = F ( i

2
)−1 and one gets

F (
i

2
) = ∆

1
2

M∆
− 1

2

N .

Solving for ∆
1
2

M we obtain:

F (
i

2
)∆

1
2

N = ∆
1
2

M. (4.2)

Since the modular operators are selfadjoint, it can be written as:

∆
1
2

NF
∗(

i

2
) = ∆

1
2

M. (4.2a)

This representation of F ( i
2 ) implies both equations (4.2) and (4.2a) imply:

4.5. Lemma:

Between ∆N and ∆M holds the relation

F (
i

2
)∆NF ∗ (

i

2
) = ∆M. (4.3)

This is a trivial consequence of (2) and (2a).
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Eq. (4.3) allows to compare the spectra of ∆N and ∆M with a similar method as the
proof of lemma 4.5.. Now we obtain:

4.6. Theorem:

Let N ⊂ M, and let Ω be cyclic and separating for both algebras, then we obtain:

spec∆N = spec∆M.

Proof: Let µ be a point in the spectrum of ∆N , then exists for every ǫ > 0 an operator
x ∈ N with ‖∆NxΩ − µxΩ‖ < ǫ, or ∆NxΩ = µxΩ + yǫ with ‖yǫ‖ < ǫ. Multiplying this
equation with F ( i

2
) we obtain:

F (
i

2
)∆NF

∗(
i

2
)F (

i

2
)xΩ = F (

i

2
)(µxΩ + yǫ).

This implies together with (4.4) the equation:

∆MF (
i

2
)xΩ = F (

i

2
)(µxΩ + yǫ).

Since MΩ is dense in H exists x̃ ∈ M with F ( i
2
)xΩ = x̃Ω, and hence

∆Mx̃Ω = µx̃Ω + ỹǫ (4.4)

with ỹǫ = F ( i
2
)yǫ.

Eq. (4.4) implies:
spec∆N ⊂ spec∆M.

Passing to the commutant gives:

spec∆−1
M ⊂ spec∆−1

N .

Both equations together give the theorem.

Up to now we have assumed that the local algebras are of type III and it remains to show
that it is fulfilled.

4.7. Lemma:

The algebra M(W ) is of von Neumann type III.

Proof: We show the lemma by contradiction. Assume M(W ) is semi-finite then it follows
that ∆it

W is inner (see [19] Prop. 8.14.13.), i.e.,∆it
W ⊂ M(W ). We know Ad ∆it

WT (a, â) =
T (Λ2a, â). Let Wb be a shifted wedge, then we know ∆it

Wb
= T (b)∆it

WT (−b) and hence

∆it
Wb
T (a)∆−it

Wb
= T (b)∆it

WT (−b)T (a)T (b)∆−it
W T (−b) = T (Λ2(t)a, â) = ∆it

WT (a)∆−it
W .
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In this formula b denotes a n-dimensional vector, which will be written as (b, b̂) if necessary
and consequently ∆−it

W ∆it
Wb
T (a) = T (a)∆−it

W ∆it
Wb

. Since ∆it
W is inner, we get ∆−it

W ∆it
Wb

⊂

M(W ) ∨M(Wb) and if b ∈W we have ∆−it
W ∆it

Wb
⊂ M(W ). On the other hand we find:

∆−it
W ∆it

Wb
= ∆−it

W T (b)∆it
WT (−b) = T ((Λ2(−t)b, b̂) − (b, b̂)).

Since this is for b ∈ W, ∆−it
W ∆it

Wb
contained in M(W ) we obtain for every B ∈ M′(W )

the equation [B, T ((Λ2(−t)b, b̂) − (b, b̂))] = 0. Multiplying with t−1 and going with t → 0

we get [B, T (

(

0 1
1 0

)

b, b̂)] = 0. This means [B, T (c, b̂] = 0 for all c ∈ V2. Since by the

spectrum condition T (a) has an analytic continuation into the forward tube, we obtain
T (a) ⊂ M(W ). This is a contradiction, since T (a) does not commute with every sub-
algebra of M(W ′) and consequently M(W ) is of type III.

Since the algebra of the wedge is of von Neumann type III, we will now look at its Connes-
type

4.8. Lemma:

T (λa+) is a (−)half-sided translation for M(W ). Then T (λa+) is of the form T (λa+) =
eiHλ,
H ≥ 0. Let E0 be the projection onto the T (λa+) invariant states, then on (1l −E0)H the
operators T (λa+) and ∆it fulfil the Weyl-relation ∆itT (λa+) = T (e−2πtλa+)∆it.

Proof: From [16] Theorem 2.2. we know the following: Let F1 be the projection onto
the eigenvalues 1 of ∆M(W ) then one has F1 ⊂ E0. Since by assumption, Ω is the only
invariant vector, we get F1 = E0. Therefore, log ∆M(W ) is defined on (1l −E0)H and this
space is invariant under the translation and the modular action. Now, from the relation
of ∆it wiht H, we conclude by functional calculus the relation Ad∆itH iλ = e−2πtλH iλ.

Since the Connes invariant of M(W ) is composed of two parts, the exponential of the
spectrum of the modular group of M(W ) on (1l − E0)H and the value zero on E0H. The
first part gives IR+. Together, we obtain the closed positive half-line. With theorem 4.4.
we obtain:

4.9. theorem:

The algebra of the wedge is of Connes-von Neumann type III1.

Next we look at the cylinder, which only exists if the dimension is larger than 2. In this
case exists a direction b ⊥ W2, and a translation T (b), b ∈ IR under which M(0Z(λ)) is
invariant. This is the situation studied by W. Driessler [21]. Hence:

4.10. Lemma:

The algebra M(0Z(λ)) is of von Neumann type III.

This result can also be obtained by the method described in the proof of the next theorem.

4.11. Lemma:

The algebras M(0D(λ)) are of type III.
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Proof: Let M(W ) be a factor and let us use the methods of lemma 4.2.. Let E ∈
M(D(λ)), then M(D(λ)) ⊂ M(W ) implies that there exists a partial isometry V with
V ∗V = E and V V ∗ = 1l ∈ M(W ). Hence V has the property V EM(D(λ)) = M(W )V .
This means as in lemma 4.2. spec∆EM(D(λ))E ⊂ spec∆W = IR+. Since this holds for
every projection in M(D(λ)), it follows that M(D(λ)) is of Connes-type III1, and this can
only be true if the algebra is of von Neumann type III.

Collecting all results, obtained so far, we have:

4.12. Theorem:

All algebras we have treated are of von Neumann-typr III and of Connes-type III1.

5. Application: Wedge-causal manifolds

In this section we want to generalize the former investigation of curved manifolds with
suitable properties, and will deal with ordered ones. To define ordered sets we use the work
of Sen and the author [21] where we define light-rays as one-dimensional manifolds, carrying
an order. Using concatenation of ordered light-ray-sections one can define forward- and
backward light-cones. In addition one has to add some convexity assumptions for these
cones. (See [22]Def.4.2.1.d). Having defined forward- and backward light-cones one can
define double-cones and local space-like separations. If the double cones are small enough
then they are all homomorphic and we can use them to define a topology. This implies
that our manifold has everywhere the same dimension, we will assume that it is is finite.
In deviation from our original work [22] we will assume that the manifold has no holes and
no cuts, so that we can use the standard symbols for the interior and the boundary of a
set. If M is an ordered manifold and y ∈ M then we call all points in the complement
of V +

x ∪ V −
x as space-like to x. Here V ±

x are the closed cones. If S is any set then the
space-like complement of S will be identified with

SpcoS =
⋂

x∈S

Spco x. (5.1)

Spco stands for space-like complement. Moreover, if y ∈
◦
V

+

x then the set D(x, y) =
V +

x ∩ V −
y will be called the double-cone, i.e., it is the order-interval between x and y. To

define wedges we need two light-rays passing through one point p. Let ℓ1p, ℓ
2
p be these two

light-rays and assume that for u ∈ ℓ1,+
p and v ∈ ℓ2,−

p there holds u ∈
◦
V

+

v , Then we define
the wedge by

W (ℓ1p, ℓ
2
p) = closure of

⋃

u∈ℓ1+p ,v∈ℓ
2,+
p

D(u, v). (5.2)

The opposite wedge is W (ℓ2p, ℓ
1
p). With the definition of the space-like complement one

finds
W (ℓ2p, ℓ

1
p) ⊂ SpcoW (ℓ1p, ℓ

2
p).

In general these two sets do not coincide. An simple example is the Rindler wedge |x0| < x1.
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There is a second definition of wedges and their complements. At first we need some
concepts.

5.1. Definition:

Let M be an ordered space and ℓ be a light ray in M, then one sets

H±(ℓ) = closure of
⋃

V ±
p ; p ∈ ℓ, (5.3)

◦
H

±
(ℓ) the interior of H±(ℓ), and ∂H±(ℓ) its boundary.
Let M be the n-dimensional Minkowski space and Vp be a light cone at p and ℓp be

a light ray through p . In this situation ∂H±(ℓ) is the tangent space at Vp containing ℓp.

5.2. Lemma:

Let M be an ordered manifold and ℓ1p 6= ℓ2p two light rays through p, then holds

W (ℓ1p, ℓ
2
p) = H−(ℓ1p) ∩H

+(ℓ2p), (5.4a)

Spco
◦
W (ℓ1p, ℓ

2
p) = {Co

◦
H

−
(ℓ1p)} ∩ {Co

◦
H

+
(ℓ2p)}, (5.4b)

where Co denotes the complement.

Proof : Let q ∈
◦
W (ℓ1p, ℓ

2
p) then there exists r ∈ (ℓ2p) and s ∈ (ℓ1p) with r << q << s.

Hence
◦
W (ℓ1p, ℓ

2
p) is contained in the intersection H−(ℓ1p) ∩ H

+(ℓ2p). Conversely, let q be

in the intersection of the two open half-spaces, then exist s ∈ ℓ1p with q ∈
◦
V

−

s . If s1 > s
are both on the light ray ℓ1p then one has V −

s ⊂ V −
s1

. Hence s can be chosen in (ℓ1p).

The same arguments imply that there exists r ∈ (ℓ2p)
− with q ∈

◦
V

+

r . Hence one has
q ∈ D(r, s1) ⊂W (ℓ1p, ℓ

2
p). Taking the closure we obtain the first statement.

Let t ∈
◦
W (ℓ1p, ℓ

2
p) then exist r ∈ (ℓ2p) and s ∈ (ℓ1p) with r << t << s. This implies

V −
t ⊂ V −

s ⊂ H−(ℓ1p). Hence q ∈ CoH−(ℓ1p) implies that q is in the complement of V −
t .

By similar arguments one finds q is in the complement of V +
t . This means that the right

hand side of Eq. (5.4b) is contained in the left hand side. Conversely, if q ∈ SpcoW (ℓ1p, ℓ
2
p)

then q is space-like to every t ∈ W (ℓ1p, ℓ
2
p) and hence it does not belong to V −

s for every
s ∈ (ℓ1p) and by the order property to every s ∈ ℓ1p. This shows q ∈ Co {H−(ℓ1p)}. Similar
arguments hold for ℓ2p, consequently Eq. (5.4b) follows.

Now we turn to our main objects, the wedge-causal manifolds.

5.3. Definition: A complete ordered manifold M will be called a wedge-causal manifold
(short w-manifold) if there holds for every pair ℓ1p 6= ℓ2p

cl (Spco W(ℓ1p, ℓ
2
p)) = W(ℓ2p, ℓ

1
p). (5.5)

This definition implies that the edges coincide.

E(ℓ1p, ℓ
2
p) = E(ℓ2p, ℓ

1
p). (5.6)
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Using Eqs. (5.4a) and (5.4b) one finds

W (ℓ2p, ℓ
1
p) = cl CoH−(ℓ2p) ∩ cl CoH+(ℓ1p) = Co H−(ℓ1p) ∩

◦
H

−
(ℓ2p)

=
◦
H

+
(ℓ1p) ∩ cl CoH+(ℓ2p) =

◦
H

+
(ℓ1p) ∩

◦
H

−
(ℓ2p).

(5.7)

The first term coincides with the fourth by Eqs. (5.4a,b) . Moreover, if p <ℓ q ∈ ℓ, then

V +
p ∩V −

q = ℓ[p, q] holds. This implies
◦
H

−
(ℓ1p) ⊂ CoH−(ℓ1p) and hence all four expressions

coincide.
First we want to draw some consequences out of Eq. (5.7).

5.4. Lemma:

Let M be a w-manifold then holds with V +(ℓ1p, ℓ
2
p) = ∪

q∈E(ℓ1p,ℓ2p)
V +

q

W (ℓ1p, ℓ
2
p) ∪W (ℓ2p, ℓ

1
p) = clSpco E(ℓ1p, ℓ

2
p), (5.8a)

H+(ℓ1p) = cl (W(ℓ2p, ℓ
1
p) ∪ V+(ℓ1p, ℓ

2
p)), (5.8b)

◦
H

+
(ℓ1p) = CoH−(ℓ1p), (5.8c)

H+(ℓ1p) ∩H
−(ℓ1p) = cl (CoH−(ℓ1p) ∪ ∂H+(ℓ2p) = W(ℓ1p, ℓ

2
p). (5.8d)

The corresponding results are valid for 1 and + interchanged with 2 and −.

Proof: Using the closure of Eq.(5.7) one finds M = Spco {p} ∪ V +
p ∪ V −

p . Notice: If
A,B ⊂ M are two closed sets, then holds Spco {A∪B} = SpcoA∩SpcoB. this follows if
x is in the space-like complement of A∪B, then it is in the complement of both and hence
in the intersection. Conversely if x is in the intersection, then it is in the complement, as
well of A as of B. Now we find

Spco {W (ℓ1p, ℓ
2
p)

⋃

W (ℓ2p, ℓ
1
p)} ={SpcoW (ℓ1p, ℓ

2
p)

⋃

SpcoW (ℓ1p, ℓ
2
p)} =

cl W(ℓ1p, ℓ
2
p)

⋂

cl W(ℓ2p, ℓ
1
p) =E(ℓ1p, ℓ

2
p).

This implies

M = W (ℓ1p, ℓ
2
p)

⋃

W (ℓ2p, ℓ
1
p)

⋃

V +(E(ℓ1p, ℓ
2
p))

⋃

V −(E(ℓ1p, ℓ
2
p)).

By the definition of H±(ℓ1p) we obtain

W (ℓ2p, ℓ
1
p)

⋃

V +(E(ℓ1p, ℓ
2
p)) ⊂ H+(ℓ1p), W (ℓ1p, ℓ

2
p)

⋃

V −(E(ℓ1p, ℓ
2
p)) ⊂ H−(ℓ1p).

The union of the two sets coincides with M, and the intersection with E(ℓ1p, ℓ
2
p). This can

only hold if (5.8c) and (5.8d) are fulfilled.

Now we want to investigate the detailed structure of space M.
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5.5. Lemma:

Let M be an ordered manifold, then:
1) If ℓ ⊂ H−(ℓ1p) and ℓ ∩ ∂H−(ℓp) 6= ∅, then one has ℓ ⊂ ∂H−(ℓp). This implies:

2) If ℓ ⊂ H−(ℓ1p) and one q ∈ ℓ ∈
◦
H

−
(ℓ1p) then ℓ ⊂

◦
H

−
(ℓ1p) follows.

3) From this we conclude: H−(ℓ) ⊂ H−(ℓ1p) and ∂H−(ℓ) ∩H−(ℓ1p) = ∅.

Proof: First we remark: If r1, r2 ∈ ℓ1p and r1 <
ℓ r2, (<

ℓ means smaller in the order of the

light-ray) implies V −
r1

⊂ V −
r2

. Therefore, if q ∈
◦
H

−
(ℓ1p) then exists a minimal r ∈ ℓ1p with

q ∈ V −
r and q /∈ V −

r′ for r′ <ℓ r. In addition one has q ∈
◦
V

−

r′ for r′ >ℓ r. Since H−(ℓ1p) is

the closure of
◦
H

−
(ℓ1p) it follows that for q ∈ ∂H−(ℓ1p) and 6 inℓ1p. Therefore, there exists

a sequence qi ∈
◦
H

−
(ℓ1p) with qi → q. Since V −

qi
=⊂ H−(ℓ1p) we conclude V −

q ⊂ H−(ℓ1p)

because V −
qi

∩
◦
H

+
(ℓ1p) = ∅.

Let now ℓ be as stated under (1),i.e., and hence, there is a q ∈ ℓ with q ∈ ∂H−(ℓ1p) then

all r ∈ ℓ1p with r <ℓ q belong to ∂H−(ℓ1p). Therefore, we have for every r ∈ ℓ, r >ℓ q we

know r ∈ H−(ℓ1p). If r >ℓ q, then r ∈
◦
H

−
(ℓ1p) is impossible since this implies q ∈

◦
H

−
(ℓ1p),

because of q ∈ V −
r ⊂

◦
H

−
(ℓ1p).

Statement 2) and 3) of the lemma are simple consequences of the first statement.

By lemma 5.4(3) we obtain a foliation of H−(l1p). Next we want to show that it can be
extended to H+(l1p), so that we obtain a foliation of the whole space M.

5.6. Lemma:

Let ℓ ⊂ H+(ℓ1p), then one has H+(ℓ) ⊂ H+(ℓ1p), and ℓ ∩ ∂H+(ℓ1p) = ∅ implies ∂H+(ℓ) ∩
∂H+(ℓ1p) = ∅. Together with lemma 5.5. we obtain a foliation of M:

Proof: If we change the order in lemma 5.5., i.e., if we replace <ℓ by >ℓ and V −
q by V +

q ,
then we obtain the statement of the lemma.

Since the light-ray ℓ1p leads to a foliation of M every of the leafs has a unique inter-
section with ℓ2p. We know that every light-ray is isomorphic with IR, which implies that we
can associate to every point of ℓ2p a real number. It is no restriction if we associate to p the
number zero and that we identify ℓ2,+

p with the positive part of IR. Since the intersection
of every leaf of the ℓ1p-foliation has a unique intersection with ℓ2p we can associate a number
to every of these folia.

We start our investigation of this section with the light-ray ℓ1p. Now we construct
a foliation based on ℓ2p and associate a number to every of these folia. Notice that the
intersection of two of the leafs present a (d-2)-dimensional manifold. Every of these in-
tersections can therefore be characterized by a pair of numbers. In flat situations they
correspond with light-ray coordinates of IR. This does not imply that M is isomorphic to
the flat space, as shown by by the example of the de Sitter space.

Now we try to trans-scribe some of the results of section 1-4. We will characterize a
wedge by two numbers Wp(a, b), where a denotes the number of ℓ1p obtained by the ℓ2p-
foliation. The number b corresponds to the other foliation. The wedgeWp(a, b) ⊂W (ℓ1p, ℓ

2
p)
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if a, b > 0. Let now a1 < a2, b1 < b2, then one has (b2, a1) > (b1, a2) and hence we can
define the double-cone Dp(b1, a2), (b2, a1)), which is the order interval between the two
points.

5.7. Assumption:

1) to every of the wedges Wp(a, b) we associate a von Neumann algebra M(Wp(a, b) and its
commutant M(Wp(b, a)). Both algebras act on the Hilbert space H. In H exist a unique
normalized vector Ω, which is cyclic and separating for the wedge algebras.
2) Also to every double-cone Dp(b1, a2), (b2, a1)) is associated a von Neumann algebra
M(Dp(b1, a2), (b2, a1))) which has Ω as cyclic and separating vector.

Since we don’t have translations, fulfilling the spectrum condition there is no Reeh-
Schlieder theorem, and therefore, the existence of the cyclic and separating vector for the
double cone-algebra has to be assumed and can not be proved. Therefore, we also do not
know whether or not the modular-group of the wedge-algebra acts local. Hence we can not
reconstruct the algebra of larger double-cones from smaller ones and the modular-group
of the wedge-algebra.

First we show that results using locality can be used also for wedge-causal manifolds

5.8. Lemma:

Let a0 < a1 < a2 < a3 and b0 < ... < b3, then in the algebra M(Dp((b0, a3), (b3, a0)) exists
an algebra N with N ⊂ M′(Dp((b1, a2), (b2, a1)).

Proof: One has (b3, a1) < (b1, a3), and henceM(Dp((b3, a2), (b1, a3)) fulfils the assumption
of the lemma.

With this result we can use the method from section 4 and obtain:

5.9. Lemma:

Every projection E ∈ M(Dp((b1, a2), (b2, a1))) is equivalent to it central cover F in M(Dp((b0, a3)(b3, a

Proof: This result is taken from [19] Thm. III.3.

The question of the von Neumann- and Connes-type could be solved in the flat situa-
tion because of the presence of the translation. In curved spaces no such group is present,
but one should expect such result because of physical arguments. There is a plausibility
argument showing that all the local algebras should be of type III. These arguments hold
for factors. (See also Yngvason [23]) It is a principle of physics that all its laws should be
discovered locally. This means every state can be observed locally with arbitrary precision.
But this is only possible if we can find to every observable, represented by a projection, a
map which sends this projection onto one, which is located in the domain, where we per-
form the observation. This however, means that for every projection E acting on H exists
a projection F belonging to N (D). But this means that there exist a partial isometry V
with V ∗V = E and V V ∗ = 1l. This implies N (D) is of type III.

6. Final remarks and problems
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Looking at the set of wedges in wedge-causal manifolds, they are all homomorphic to
the fourth quadrant in IRd. But it is not known whether or not these morphisms form
a group which is representable by a unitary group. If so, it will probably not fulfil any
kind of spectrum condition. This was necessary to obtain half-sided translations and the
structure of the modular group of the wedge algebra.

If we look at the wedge algebra in the flat case then the modular group and the
translation in the ℓ1-direction fulfils the Weyl-relation [15]. Can one say something similar
about the modular group of the wedge-algebra in the wedge-causal case?

We know from the general theory of sub-algebras with the same cyclic and separating
vector [2] that their modular operators are in one-to-one orrespodence to positive operators
which are larger then the modular operator of the given algebra. These positive operators
have to fulfil certain conditions to guarantee that they are modular operators of sub-
algebras. Which additional conditions are necessary in order that they are associated to
wedge-algebras or double cones?
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