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Model building in AQFT

Recently, many new ideas about model building within the setting of
AQFT. Partial list:

construction of interaction-free theories by modular localization
[Brunetti/Guido/Longo 2002]

boundary QFT models [Longo/Rehren 2004]

Construction of integrable models [Schroer 2000, GL 2003,
Buchholz/GL 2004, GL 2006, Bostelmann/Cadamuro 2012,...]

Models of string-local infinite spin fields [Mund/Schroer/Yngvason
2006]

construction of conformal local nets by framed VOAs
[Kawahigashi/Longo 2006]

Deformations of QFTs [Grosse/GL 2007, Buchholz/GL/Summers 2011, GL
2012, Plaschke 2013, Alazzawi 2013, GL/Schlemmer/Tanimoto 2013]

Constructions with endomorphisms of standard pairs [Longo/Witten
2011, Tanimoto 2012, Bischoff/Tanimoto 2013]

1/16



Modular theory and standard spaces

Important mathematical tool: Modular theory.

® For von Neumann algebra A C B(?) with cyclic and separating
vector €2, the real subspace H := A(O).,) C H is standard:

H+iH=H, HNiH= {0}.
® Modular data of (A, ©2) completely encoded in H:
S:H+iH— H+iH,  h+ ik~ h— ik.
® Polar decomposition of S gives interesting data (J, A™). In particular
JH = H' = symplectic complement w.r.t. Im(-, -), A"H=H.

® "symplectic complement replaces commutant”
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Von Neumann algebras and real standard spaces

A(0)

projection to
standard subspaces

H(O) = A(0)02

® important data (but not the full algebraic structure) encoded in
standard spaces H(O)
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Von Neumann algebras and real standard spaces

O

7

A(0)

projection to
standard subspaces

H(0) := A(0)2

(5

® O — H(O) inherits isotony, covariance, locality (with symplectic
complements instead of commutants) from O — A(O)
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Von Neumann algebras and real standard spaces

/ |
A(O) Ao(0O)
projection to second
standard subspaces quantization

H(0) := A(0)2

5

® Can go back to algebraic setting by second quantization,
H(O) — Ao(O) := {Weyl(h) : he HO)}'

® Free field theory < net of standard spaces
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Von Neumann algebras and real standard spaces

O

1IN

AO)  A(0) A (0)

projection to second "deformed
standard subspaces quantization second quantization"

H(0) := A(0)2

(5

m Also "deformed" versions of second quantization exist; give
interacting nets A, (¢ = 2-particle S-matrix). So far under control
for integrable models, see talks by Sabina (today) and Yoh (Friday)

3/16



Von Neumann algebras and real standard spaces

O

1IN

AO)  A(0) A (0)

projection to second "deformed
standard subspaces quantization second quantization"

H(0) := A(0)2

(5

® Focus here: Nets of standard spaces and their properties

m Simplified version in comparison to von Neumann algebra situation
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Standard pairs and nets of standard spaces

A (1- or 2-dimensional) standard pair (H, T) consists of

B a real standard subspace H C ‘H

B a unitary strongly continuous positive energy representation T of
the translations such that T(x)H C H for x "on the right".
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B a unitary strongly continuous positive energy representation T of
the translations such that T(x)H C H for x "on the right".

Ind=1: Set

H(—o00,b) = T(b)H'

0 b
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Standard pairs and nets of standard spaces

A (1- or 2-dimensional) standard pair (H, T) consists of
B a real standard subspace H C ‘H

B a unitary strongly continuous positive energy representation T of
the translations such that T(x)H C H for x "on the right".

Ind=1: Set

® Gives map [ — H(I) from intervals in IR to real subspaces of H.

® Same construction can be done in d = 2 with the right wedge
instead of R.
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From standard pairs to nets of standard spaces

m [— H(I) is isotonous, local, T-covariant.

® By Borchers' Theorem, T extends to a (anti-) unitary representation
U of the "(ax + b)-group” (in d = 1) or the proper 2d Poincaré group
(in d = 2), under which I — H(I) is still covariant.

If (H, T) is non-degenerate (no non-zero T-invariant vectors), then H(I)
is standard for any non-empty interval L.
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From standard pairs to nets of standard spaces

m [— H(I) is isotonous, local, T-covariant.

® By Borchers' Theorem, T extends to a (anti-) unitary representation
U of the "(ax + b)-group” (in d = 1) or the proper 2d Poincaré group
(in d = 2), under which I — H(I) is still covariant.

If (H, T) is non-degenerate (no non-zero T-invariant vectors), then H(I)
is standard for any non-empty interval L.

® follows essentially from [Brunetti/Guido/Longo 2002]
® No comparable result for von Neumann-algebraic case exists.

® The functions ¢ used in the "deformed second quantization" appear
in standard space setting when passing to endomorphisms/subnets.
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Endomorphism Subnets Hy

An endomorphism of a standard pair (H, T) is a unitary V with
e VHC H

e [V, T(x)] = 0 for all x.
Endomorphisms form semigroup £(H, T).
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Endomorphism Subnets Hy

An endomorphism of a standard pair (H, T) is a unitary V with
e VHC H

e [V, T(x)] = 0 for all x.

Endomorphisms form semigroup £(H, T).

Given V€ £(H, T), define

Hy(a, b) := H(—00, b) N VH(a, c0)

and analogously in d = 2.

m Setting V = 1 returns previous construction.
® For general endomorphism V, have inclusions (subnet)

Hy(I) = H(I) N VH(I) C H(I) .
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® For general V, have T-covariant local net I+— Hy(I) of real subspaces
®m Hy will be fully U-covariant only if VH = H.

® Main question: Are the Hy(I) cyclic or at least non-trivial?
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For general V, have T-covariant local net I — Hy(I) of real subspaces
Hy will be fully U-covariant only if VH = H.

® Main question: Are the Hy(I) cyclic or at least non-trivial?

Trivial example: V= T(x), x > 0, then

Ho() = {{0} 1< x

cyclic |l > x

The minimal localization radius ry (of the net Hy) is

ry:=1inf{r >0 : Hy(—r,r) # {0}} € [0, 0]

(no non-zero vectors localized in intervals shorter than 2ry.)
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For understanding Hy, one needs to understand V.

A symmetric inner function on the upper half plane is an analytic
bounded function ¢ : C; — C such that

o(—p) =) =wp)™, p>0.

Theorem (Longo/Witten 2011)

There exists a unique 1d non-degenerate standard pair (H, T) with U
irreducible. Its endomorphism semigroup is

EH,T) ={¢(P) : ¢ symmetric inner },

where P is the generator of T.

Structure of symmetric inner functions matches that of scattering
functions up to one condition.
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Inner functions

Canonical Factorization

Any symmetric inner function ¢ is of the form

o(p) = £ B(p) S(p) ,

with

x>0

B Ba (symmetric) Blaschke product, B(p) = %
n

—j 1+4-pt
® Ssingular inner, S(p) = e G HE)

0 <= X, {Pu}n, 1t
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Calculating r,

What is the localization radius r,, of the subnet with V.= ¢(P) and the
unique irreducible 1d standard pair?

Localization radii of elementary factors:

inner function ¢ ‘ localization radius r,
+elP* x/2
single Blaschke factor 0

singular function 00
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Calculating r,

What is the localization radius r,, of the subnet with V.= ¢(P) and the
unique irreducible 1d standard pair?

Localization radii of elementary factors:

inner function ¢ ‘ localization radius r,
+elP* x/2

single Blaschke factor 0

singular function 00

® Need to consider infinite products, but ¢ — r,, discontinuous
(cf. [Tanimoto 2011] for similar effect)

B important quantity: convergence exponent of the zeros {p,} of ¢,

py = inf{a >0 : Z |pal ™% < 00} € [0, o]
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Calculating r,

If pp > 1orpu, #0,thenr, =00  (all interval spaces trivial).

Ifp, <1, u, =0, thenr, = %xw (all interv. sp. cyclic if x, = 0).
If r > ry, then Hy(—r, 1) is cyclic.
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Calculating r,

If pp > 1 oru, #0, thenr, = 0o (all interval spaces trivial).
Ifp, <1, u, =0, thenr, = %xw (all interv. sp. cyclic if x, = 0).
If r > ry, then Hy(—r, 1) is cyclic.

® Proof relies on explicit characterization of the spaces H(—r, r) in the
(unique) irreducible case:

® InH = L*(R4, dp/p), a function is localized in H(—r, r) iff it
extends to an entire function of exponential type at most r, with
(=p) = ¥ (p)-

® + complex analysis (entire functions, canonical products ... )
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For intermediate case p, = 1:

Example

o(p) == %, v, q > 0, is a symmetric inner function with

x, =0, fp =0, ppo =1, ro=V.

® Get nets (of subspaces or von Neumann algebras) with intrinsic
minimal localization length.

® Regularity of endomorphism (no singular part, zeros not too dense)
is necessary (and sufficient) for rich local structure.

® — Surprising analogies to integrable models and their scattering
functions.
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Symmetric inner functions vs. scattering functions

® A symmetric inner function is called a scattering function if it
satisfies ¢ = y(¢), where v(¢)(p) = ¢(1/p), Imp > 0 (cf. Sabina's
talk)

® A scattering function is called regular iff ¢ o exp extends analytically
and bounded to —e < Imf < 7 + ¢ for some € > 0.

® For regular scattering functions, the inverse scattering problem can
be solved by an operator-algebraic construction. Have there r, < co
respectively r, = 0 [GL 2006]
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Symmetric inner functions vs. scattering functions

® A symmetric inner function is called a scattering function if it
satisfies ¢ = y(¢), where v(¢)(p) = ¢(1/p), Imp > 0 (cf. Sabina's
talk)

® A scattering function is called regular iff ¢ o exp extends analytically
and bounded to —e < Imf < 7 + ¢ for some € > 0.

® For regular scattering functions, the inverse scattering problem can
be solved by an operator-algebraic construction. Have there r, < co
respectively r, = 0 [GL 2006]

® Here: If ¢ is a scattering function, then either p, = 0 or p, = oco. If
p, = 0, then regularity of ¢ is equivalent to r, = 0.
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The 2d situation

B |n d = 2, the non-degenerate irreps U (of the 2d Poincaré group) are
uniquely labeled by either a mass m > 0, or m = 0 and choice of
left/right.

® The m = O irreps give the same nets as in 1d (chiral situation).

— focus on massive case.
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The 2d situation

B |n d = 2, the non-degenerate irreps U (of the 2d Poincaré group) are
uniquely labeled by either a mass m > 0, or m = 0 and choice of
left/right.

® The m = O irreps give the same nets as in 1d (chiral situation).

— focus on massive case.
® Generalization of Longo/Witten Theorem to massive 2d case:

Let (H, T) be a non-degenerate 2d standard pair with massive
multiplicity free representation U. Then

EH,T) = {(Py, M) : ¢ € L°(R2), ¢(-, m) symmetric inner}

m P.: generator of lightlike translations, M: mass operator.
m Examples: U= U, irreducible, or U= U,, ®+ U, (symmetric tensor

square, "2 particle situation"), ...
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The 2d situation - localization radius

® Localization radius ry,, of net O — HZ(O) with irreducible U= Uy,
and V= @(P;)?

H

r> rmge = HJ(O,) is cyclic.

%max{x@, Xy(0)} < Tmp < min{ry,, 7y,) }

If supp i, # {0} = rm,, = 0.

But there also exist Blaschke products ¢ such that
Tp = T'y(p) = 00, but 7, , = 0.

(analogous to scaling limits of integrable models,
[Bostelmann/GL/Morsella 2011])

[~ - I |

® The symmetry ¢ — () corresponds to time reflection.
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Conclusions

® Have studied (sub-)nets of standard spaces and their localization
properties.

® Regularity of endomorphism influences localization radius.
® Similarities to integrable models (¢ = 2-particle S-matrix)

® Link between endomorphism picture and deformation picture not
yet clear, to be investigated also at 2-particle level

® |n higher particle situations (tensor products of standard subspaces),
E(H, T) will be non-abelian and also contain integral operators
(momentum transfer).

® Should provide input into the construction of models with stronger
interaction.
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