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Motivation

I In perturbative QFT, one frequently splits the field

Φ = φ̄+ φ

into a classical (background) part φ̄, and a dynamical perturbation φ,
which is quantized. Examples are:

• Spontaneous symmetry breaking: φi = vi + χi .
• Background field method in YM: A = Ā+ A.
• (Perturbative) Quantum Gravity: g = ḡ + h.

I In which sense is the resulting theory independent of the split?

I Naively, an observable F (φ̄, φ) depends only on Φ = φ̄+ φ iff

Dϕ̄F := (δ̄ϕ̄ − δϕ̄)F := 〈( δ
δφ̄
− δ

δφ
)F , ϕ̄〉 = 0.

I Various problems in the implementation in quantum (gauge) theory:

• The non-perturbative background field φ̄ enters the propagators, so
the algebras of observables Aφ̄ depend on φ̄. How to define δ̄ϕ̄?
• In gauge theories, the split independence of the action is broken by

gauge fixing. The violation is BRST exact, background independence
restored in observable algebra (BRST cohomology), in classical theory.
• In quantum theory, anomalies might spoil background independence.
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The setup
I The problem of defining the derivative w.r.t. the background field can be

discussed in the context of the scalar field [Hollands 11, Collini 16].

I Let M globally hyperbolic, R ⊂ M compact, containing Cauchy surface,
and λ compactly supported and constant on R. Consider the action

S [Φ] = −
∫ (

1
2
∂µΦ∂µΦ + 1

2
m2Φ2 + 1

4!
λΦ4

)
vol.

I With Φ = φ̄+ φ and φ̄ on-shell, we obtain

S [φ̄, φ] = − 1
2

∫ (
∂µφ∂

µφ+ (m2 + 1
2
λφ̄2)φ2

)
vol︸ ︷︷ ︸

S0

−
∫ (

1
3!
λφ̄φ3 + 1

4!
λφ4)

)
vol︸ ︷︷ ︸

Sint

.

I S0 for different backgrounds differ only in a compact region.

I The action is split invariant in the sense that

δ
δφ̄(x)

S = δ
δφ(x)

Sint.

I An infinitesimal variation ϕ̄ of the on-shell background φ̄ is a solution to

(�−m2 − 1
2
λφ̄)ϕ̄ = 0. (*)

I Set SΦ4 of solutions φ̄ as manifold with tangent spaces Tφ̄SΦ4 = Sol(*).



The interacting algebras

I Quantization in the frameworks of perturbative AQFT [Brunetti & Fredenhagen 00]

and of locally covariant QFT [Hollands & Wald 01; Brunetti, Fredenhagen & Verch 03],
with φ̄ a geometric datum on the same footing as g .

I Star product ?φ̄ on algebra Wφ̄ of microcausal functionals.

I Renormalized time-ordered products Tφ̄ give rise to retarded products Rφ̄:

Rφ̄(eīF⊗ ; eīG⊗ ) := Tφ̄(eīG⊗ )−1 ?φ̄ Tφ̄(eīF⊗ ⊗ eīG⊗ ).

Here F ,G are local functionals and ī := i
~ .

I Interacting time ordered products generated by

T int
φ̄ (eīF⊗ ) := Rφ̄(eīF⊗ ; eīSint⊗ ).

I Interacting algebra Wint
φ̄ generated by T int

φ̄ (eīF⊗ ) with suppF ⊂ R.

I Local algebras Wint
φ̄ (L) generated by T int

φ̄ (eīF⊗ ) with suppF ⊂ L ⊂ R.

I Interacting retarded products defined by

R int
φ̄ (eīF⊗ ; eīG⊗ ) := T int

φ̄ (eīG⊗ )−1 ?φ̄ T int
φ̄ (eīF⊗ ⊗ eīG⊗ ).



Retarded variation and perturbative agreement

I Actions S0 coincide in past of suppλ, so consider retarded Møller operator

τ rφ̄,φ̄′ : Wφ̄′ →Wφ̄,

identifying observables in past of suppλ [Hollands & Wald 01; Brennecke & Dütsch 08].

I Retarded variation as the infinitesimal version:

δrϕ̄F := ∂s(τ
r
φ̄,φ̄s

Fs)|s=0.

Here ϕ̄ = ∂s φ̄s |s=0 and Fs ∈Wφ̄s
. This a derivation.

I δrϕ̄ is the appropriate replacement for δ̄ϕ̄.

I Perturbative agreement [Hollands & Wald 05] requires that it should not matter
whether one includes quadratic terms in the free or interacting part of the
action. For variations of φ̄, it implies

δrϕ̄T (eīF⊗ ) = īT (δ̄ϕ̄F ⊗ eīF⊗ ) + īR(eīF⊗ ; δ̄ϕ̄S0). (PA)

I Renormalization condition, can be fulfilled [Collini 16; Drago, Hack & Pinamonti 17].

I (PA) implies

δrϕ̄T
int(eīF⊗ ) = īT int(δ̄ϕ̄F ⊗ eīF⊗ ) + īR int(eīF⊗ ; δ̄ϕ̄S).



The Fedosov connection

I The Møller operator provides local trivializations for the algebra bundle

Wint
Φ4 := tφ̄W

int
φ̄ → SΦ4 , Wint

Φ4 (L) := tφ̄W
int
φ̄ (L)→ SΦ4 .

I We require connection Dϕ̄ on Wint
Φ4 to be derivation respecting localization,

Dϕ̄Γ(Wint
Φ4 (L)) ⊂ Γ(Wint

Φ4 (L)). (LocCond)

I Retarded variation δrϕ̄ violates this, but

Dϕ̄ := δrϕ̄ − δϕ̄

is a flat (Fedosov) connection [Hollands 11; Collini 16]:

Dϕ̄T
int(eīF⊗ ) = īT int({δ̄ϕ̄ − δϕ̄}F︸ ︷︷ ︸

Dϕ̄F

⊗eīF⊗ ) + īR int(eīF⊗ ; {δ̄ϕ̄S − δϕ̄Sint}︸ ︷︷ ︸
=0

),

[Dϕ̄,Dϕ̄′ ] = Dbϕ̄,ϕ̄′c.

I One-to-one correspondence of classically b.i. functionals Dϕ̄F = 0 and
quantum b.i. sections Dϕ̄T

int(eīF⊗ ) = 0.

I Flat sections of Wint
Φ4 provide consistent assignment of observables to

different backgrounds.

I Existence of a flat connection as criterion for background independence.
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The setup

I Dynamical quantity: Connection A on principal G bundle P → M.

I Split
A = Ā+ A

into a background connection Ā and dynamical vector potential A.

I Ā on-shell w.r.t. Yang-Mills action (in neighborhood of R),

∇̄µF̄µν = 0.

I Action for the perturbation A

SYM = − 1
4

∫ {
(∇̄µAν − ∇̄νAµ + λ[Aµ,Aν ])2 + 2F̄ I

µν [Aµ,Aν ]I
}
vol,

with λ compactly supported and equal to 1 on R.

I Split independent in R:

δ
δĀ(x)

SYM = δ
δA(x)

SYM,int, x ∈ R.

I Consider Ā as geometric datum and require local covariance w.r.t. it [Z. 12].

I Under background gauge transformation, A transforms in the adjoint:

Ā 7→ Āg = adg−1 ◦Ā+ g∗θ, A 7→ adg−1 A.



Gauge fixing
I Action invariant under dynamical gauge transformations, infinitesimally

δAµ = ∇̄µχ+ λ[Aµ, χ].

I Need to gauge fix. Use BV-BRST formalism: Introduce fields (C , C̄ ,B)
and anti-fields (A‡µ,C

‡, C̄ ‡,B‡), and define

Ssc := −
∫

(∇̄µC + λ[Aµ,C ])︸ ︷︷ ︸
sAµ

Aµ‡ + 1
2
λ[C ,C ]︸ ︷︷ ︸

sC

C ‡ + B︸︷︷︸
sC̄

C̄ ‡.

I It generates the BRST transformation via the anti-bracket

(F ,G) :=

∫
δRF

δΦi (x)

δLG

δΦ‡i (x)
− δRF

δΦ‡i (x)

δLG

δΦi (x)

I Choose gauge-fixing fermion

Ψ :=

∫
C̄
(
∇̄µAµ + 1

2
B
)
vol

and perform “canonical transformation”

S := e(−,Ψ)(SYM + Ssc).

I Define BV differential
sF := (S ,F ).



Background independence

I Due to the explicit background dependence of the gauge fixing fermion,
the gauge fixed action is not split independent

δ
δĀ(x)

S − δ
δA(x)

Sint = s δ
δĀ(x)

Ψ, x ∈ R.

Violation is s exact, not relevant for observables (cohomology of s).

I Set of solutions SYM of YM equation is a manifold, away from special
(symmetric) solutions [Arms 81]. Away from such singularities, TĀSYM is
space of solutions ā to YM equation linearized around Ā.

I Conjugating “split differential” Dā := δ̄ā − δā with gauge fixing trafo yields

D̂ā := e(−,Ψ) ◦ Dā ◦ e−(−,Ψ) = Dā − (−,DāΨ).

I It fulfills

D̂ā ◦ s − s ◦ D̂ā = 0,

[D̂ā, D̂ā′ ]− D̂bā,ā′c = 0.

I D̂ā flat and well-defined on s cohomology. Can be used to characterize
background independent classical observables.
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The quantum BV differential and anomalies

I Construction of interacting algebra Wint analogously to scalar case.

I The free BV differential s0 fulfills the anomalous Ward identity [Hollands 07]

s0T (eīF⊗ ) = īT ({s0F + 1
2
(F ,F ) + A(eF⊗)} ⊗ eīF⊗ )

with the anomaly A of order ~ and subject to consistency conditions.

I We assume absence of gauge anomalies, i.e.,

A(eSint⊗ ) = 0.

I The interacting BV differential s int is on-shell equal to −ī[Q int,−]? [Fröb 18].
Its cohomology in Wint are the observables in the interacting theory.

I s int fulfils the interacting anomalous Ward identity [Taslimi Tehrani 17; Fröb 18]

s intT int(eīF⊗ ) = īT int({sF + 1
2
(F ,F ) + Aint(eF⊗)} ⊗ eīF⊗ )

with the interacting anomaly

Aint(eF⊗) := A(eF⊗ ⊗ eSint⊗ ).

I Generators T int(eīF⊗ ) of observables are characterized by

sF + 1
2
(F ,F ) + Aint(eF⊗) = 0. (genObs)



Background independence I

I Connection Dā should be well-defined and flat on s int cohomology, i.e.,

Dā ◦ s int − s int ◦Dā = 0,(
[Dā,Dā′ ]−Dbā,ā′c

)
Ker s int ∈ Im s int.

I First guess: Replace

D̂ā = δ̄ā − (−, δ̄āΨ)− δā + (−, δāΨ) → D0
ā := δrā − δā + (−, δāΨ).

I Perturbative agreement w.r.t. changes in Ā may be assumed [Z. 14.]. Then

D0
āT

int(eīF⊗ ) = īT int(D0
āF ⊗ eīF⊗ ) + īR int(eīF⊗ ;D0

āSint + δ̄āS0︸ ︷︷ ︸
s(δ̄āΨ)

) (*)

with D0
ā := Dā + (−, δāΨ) and s coinciding with s on R.

I Second term in (*) spoils localization property (LocCond). But

• vanishes for ā supported in future of R,
• equals a commutator for ā supported in past of R,
• is formally s int exact for ā supported in R and F fullfilling (genObs).

I Choose η with supp η ⊂ J−(R), η = 1 on J−(R) \ R, and define

Dā := D0
ā + ī[T int(s(δ̄ηāΨ)),−]?.



Background independence II

I Provided that

Aint(δ̄aΨ) = 0, supp a ⊂ R, (bgAnomaly)

Dā is well-defined and flat on s int cohomology. For F fulfilling (genObs)

DāT
int(eīF⊗ ) = īT int({D̂āF + Aint(δ̄āΨ⊗ eF⊗)} ⊗ eīF⊗ ) mod Im s int

I Condition D̂āF = 0 for background independent classical functionals
quantum corrected to

D̂āF + Aint(δ̄āΨ⊗ eF⊗) = 0.

I The condition (bgAnomaly) can be fulfilled in YM theory in D = 4.

I Proof uses that cohomology of s is trivial for Lie algebra valued one-forms
of mass dimension 3.
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Summary & Outlook

I Summary:

• Existence of a flat connection on the observable bundle over
background configurations as criterion for background independence.
• Established for (pure) Yang-Mills in D = 4.

I Outlook:

• Spontaneous symmetry breaking.
• Non-renormalizable theories, such as gravity.
• Fedosov quantization.
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Appendix: Comparison with other approaches

I In the literature, background independence is typically discussed within the
Riemannian path integral or with an infinitesimal background field.

I The former is formal and connection to Lorentzian signature unclear.

I The latter misses non-perturbative aspects and depends on the choice of a
reference connection.

I A further common shortcoming is that they do not provide a means to
compare observables on different backgrounds.

I Unclear (to me) whether the criterion of triviality of the interacting relative
Cauchy evolution [Brunetti, Fredenhagen & Rejzner 13] is better in that respect.

I Existence of a flat connection as criterion for background independence in
other settings:

• QM [Reuter 98].
• String field theory [Witten 93; Sen & Zwiebach 93].
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