Fermionic Projectors and Hadamard States

Simone Murro

Fakultät für Mathematik Universität Regensburg

"Foundations and Constructive Aspects of QFT"

Göttingen, 16th of January 2016

"To the memory of Rudolf Haag, one of the founding fathers of the algebraic quantum field theory"

Outline

- The algebraic approach to QFT
- Quasi-free states for CAR algebras
- Fermionic Projector and the Hadamard condition:
 - FP states in a strip of spacetime
 - FP states and the mass oscillation property
 - FP states via the Møller operator
- Conclusions

Based on:

- ► F. Finster, S. M., C. Röken: "The Fermionic Projector in a time-dependent external potential: mass oscillation property and Hadamard states"
- ▶ N. Drago, S. M.: "A new class of Fermionic Projectors: Møller operators and mass oscillation properties." (work in progress)

Algebraic Quantum Field Theory

AQFT - I: Dirac field

• Spinor bundle $S\mathcal{M}\simeq\mathcal{M}\times\mathbb{C}^4$ and cospinor bundle $S^*\mathcal{M}\simeq\mathcal{M}\times(\mathbb{C}^4)^*$, with $\mathcal{M}\simeq\mathbb{R}\times\Sigma$ 4-dim globally hyperbolic spacetime :

$$ds^2 = \beta^2 dt^2 - h_t; \quad \beta \in C^{\infty}(M; \mathbb{R}^+) \text{ and } h_t \in \mathsf{Riem}(\Sigma); \forall t \in \mathbb{R}.$$

- Spinors $\psi \in C^{\infty}_{sc}(\mathcal{M}, \mathbb{C}^4)$ and cospinors $\varphi \in C^{\infty}_{sc}(\mathcal{M}, (\mathbb{C}^4)^*)$.
- Dirac conjugation map: $A: C^{\infty}_{sc}(\mathcal{M}, \mathbb{C}^4) {\underset{(\leftarrow)}{\longrightarrow}} C^{\infty}_{sc}(\mathcal{M}, (\mathbb{C}^4)^*).$
- Spin scalar product: $\langle \cdot | \cdot \rangle_x : C^{\infty}_{sc}(\mathcal{M}, \mathbb{C}^4) \times C^{\infty}_{sc}(\mathcal{M}, \mathbb{C}^4) \to \mathbb{C}$ $\langle \psi | \widetilde{\psi} \rangle_x := ((A\psi)\widetilde{\psi})(x).$
- spacetime inner product: $\langle \cdot | \cdot \rangle$: $C_{sc}^{\infty}(\mathcal{M}, \mathbb{C}^4) \times C_c^{\infty}(\mathcal{M}, \mathbb{C}^4) \to \mathbb{C}$

$$\langle \psi | \vartheta \rangle = \int_{\mathcal{M}} \langle \psi | \vartheta \succ_{\mathsf{x}} d\mu_{\mathsf{g}} .$$

AQFT - II: Dynamics

• **Dirac operator** on SM and its dual on S^*M :

$$\mathcal{D}\psi_{\mathbf{m}} \doteq (i\gamma^{\mu}\nabla_{\mu} + B - \mathbf{m})\psi_{\mathbf{m}} = 0, \qquad \mathcal{D}^{*}\varphi_{\mathbf{m}} = (-i\gamma^{\mu}\nabla_{\mu} + B - \mathbf{m})\varphi_{\mathbf{m}} = 0.$$

• Causal propagators: $G^{(*)}: C_c^{\infty}(\mathcal{M}, (\mathbb{C}^4)^{(*)}) \to C_{sc}^{\infty}(\mathcal{M}, (\mathbb{C}^4)^{(*)})$

$$\begin{split} \mathcal{D}^{(*)} \circ G^{(*)} &= 0 = G^{(*)} \circ \mathcal{D}^{(*)}|_{C_c^{\infty}(\mathcal{M}, (\mathbb{C}^4)^{(*)})} \\ supp(G^{(*)}(f)) &\subseteq J(supp(f)), \qquad \forall f \in C_c^{\infty}(\mathcal{M}, (\mathbb{C}^4)^{(*)}) \end{split}$$

Hilbert spaces:

$$\mathcal{H}^{s}_{m} := \overline{\left(\mathcal{S}ol(\mathcal{D}) \simeq \frac{C_{c}^{\infty}(\mathcal{M}, \mathbb{C}^{4})}{\mathcal{D}C_{c}^{\infty}(\mathcal{M}, \mathbb{C}^{4})}, (\cdot \mid \cdot)^{s}_{m} \stackrel{.}{=} \int_{\Sigma} \prec \cdot \mid \psi \cdot \succ_{x} d\Sigma\right)}$$

$$\mathcal{H}^{c}_{m} := \overline{\left(\mathcal{S}ol(\mathcal{D}^{*})\right) \simeq \frac{C_{c}^{\infty}(\mathcal{M}, (\mathbb{C}^{4})^{*})}{\mathcal{D}^{*}C_{c}^{\infty}(\mathcal{M}, \mathbb{C}^{4})^{*})}, (\cdot \mid \cdot)^{c}_{m} \stackrel{.}{=} \int_{\Sigma} \prec A^{-1} \cdot \mid \psi A^{-1} \cdot \succ_{x} d\Sigma\right)}$$

AQFT - III: CAR Algebra

- ullet unital Borchers-Uhlmann *-algebra: $\mathcal{A} = igoplus_{k=0}^{\infty} \left(\mathcal{S}ol(\mathcal{D}_m) \oplus \mathcal{S}ol(\mathcal{D}_m^*) \right)^{\otimes k}$
 - $1 = \{1, 0, 0, \ldots\}, \Phi(\psi_m) = \left\{0, \begin{pmatrix} \psi_m \\ 0 \end{pmatrix}, 0, \ldots\right\}, \Psi(\varphi_m) = \left\{0, \begin{pmatrix} 0 \\ \varphi_m \end{pmatrix}, 0, \ldots\right\}$
 - *-operation: $\left\{0,0,\begin{pmatrix}\psi_{\pmb{m}}\\\varphi_{\pmb{m}}\end{pmatrix}\otimes\begin{pmatrix}\widetilde{\psi}_{\pmb{m}}\\\widetilde{\varphi}_{\pmb{m}}\end{pmatrix},\ldots\right\}^* = \left\{0,0,\begin{pmatrix}A^{-1}\widetilde{\varphi}_{\pmb{m}}\\A\widetilde{\psi}_{\pmb{m}}\end{pmatrix}\otimes\begin{pmatrix}A^{-1}\varphi_{\pmb{m}}\\A\psi_{\pmb{m}}\end{pmatrix},\ldots\right\}$
- We encode the CARs in the *-ideal $\mathcal{I} \subset \mathcal{A}$ generated by:
 - $\Phi(\psi_m) \otimes \Phi(\widetilde{\psi}_m) + \Phi(\widetilde{\psi}_m) \otimes \Phi(\psi_m)$
 - $\Psi(\varphi_m) \otimes \Psi(\widetilde{\varphi}_m) + \Psi(\widetilde{\varphi}_m) \otimes \Psi(\varphi_m)$
 - $\Psi(\varphi_m) \otimes \Phi(\psi_m) + \Phi(\psi_m) \otimes \Psi(\varphi_m) \left(A^{-1}\varphi_m \mid \psi_m\right)_m^s \mathbb{1}$
- Algebra of fields: $\mathcal{F} \doteq \frac{\mathcal{A}}{\mathcal{I}}$

AQFT - IV: States

- Algebraic state $\omega: \mathcal{F} \to \mathbb{C}$ such that: $\omega(\mathbb{1}) = 1$, $\omega(h^*h) \geq 0$, $\forall h \in \mathcal{F}$.
- N.B.: Choosing a state ω is equivalent to assigning $\omega_n(h_1,\ldots,h_n) \ \forall n \in \mathbb{N}$ and $\forall h_i \in \mathcal{F}$.
 - Quasi-free states: $\omega_{2n+1}(h_1,\ldots,h_{2n+1})=0$

$$\omega_{2n}(h_1,\ldots,h_{2n})=\sum_{\sigma\in S_{2n}'}(-1)^{\operatorname{sign}(\sigma)}\prod_{i=1}^n\ \omega_2\big(h_{\sigma(2i-1)},h_{\sigma(2i)}\big).$$

Question: Are all states physically acceptable?

Of course not! Minimal physical requirements are:

- i) covariant construction of Wick polynomials to deal with interactions,
- ii) same UV behaviour of the Minkowski vacuum,
- iii) finite quantum fluctuations of all observables.

Answer: Hadamard States

AQFT - V: Hadamard States

ullet A (quasi-free) state ω satisfies the **Hadamard condition** if and only if

$$WF(\omega_2) = \left\{ (x,y,\xi_x,\xi_y) \in T^*M^{\otimes 2} \setminus 0 \; \middle|\; (x,\xi_x) \sim (y,-\xi_y), \quad \xi_x \triangleright 0 \right\}.$$

Question: How many Hadamard states do we know?

- deformation arguments
- static spacetime
- pseudodifferential calculus
- holographic techniques

Question: Does there exist an <u>explicit</u> method that which <u>does not</u> make use of use symmetries?

Quasi-free states for CAR algebras

Araki's characterisation

[H. Araki: "On quasifree states of CAR and Bogoliubov automorphisms".]

Lemma 3.2: For any quasi-free state ω on $\mathcal F$ there exists $Q\in\mathcal B(\mathscr H^s_m)$ satisfying

(a)
$$\omega_2 \Big(\Psi(\varphi_m) \Phi(\psi_m) \Big) = \left(A^{-1} \varphi_m \mid Q \psi_m \right)_m^s$$

- (b) Q + AQA = 1,
- (c) $0 \le Q = Q^* \le 1$.

Lemma 3.3: Let Q be a bounded symmetric operator on \mathscr{H}_m^s with the following properties

- (a) Q + AQA = 1,
- (b) $0 \le Q = Q^* \le 1$.

Then there exists a unique quasi-free state ω on ${\mathcal F}$ such that

$$\omega_2\Big(\Psi(\varphi_m)\Phi(\psi_m)\Big) = \left(A^{-1}\varphi_m \mid Q\psi_m\right)_m^s$$

• Our motto will be \implies "Split the \mathscr{H} ilbert space!" (...but how?)

The Fermionic Signature Operator

- As before $\mathcal{H}_m^s := \overline{\left(\mathcal{S}ol(\mathcal{D})\,,\, (\cdot\mid\cdot)_m^s\right)}$ and let $N(\cdot\,,\cdot):\mathcal{H}_m^s \times \mathcal{H}_m^s \to \mathbb{C}$ be a symmetric and densely defined sesquilinear form satisfying :
 - a) $N(\cdot, \cdot) \leq C(\cdot)||\cdot||$.
- ullet The **Fermionic Signature Operator** is $\mathcal{S} \in \mathcal{L}(\mathcal{H}_m^s)$ built out of the Riesz theorem

$$N(\cdot,\cdot)=(\cdot\,|\,\mathcal{S}\,\cdot)_m^s.$$

ullet Taking $\mathcal{S}^2 := \mathcal{S}^*\mathcal{S}$, we construct the **Fermionic Projector**

$$\chi^{\pm}(S) := \frac{1}{2|S|}(S \pm |S|) : \mathcal{H}_{m}^{s} \to \mathcal{H}_{m}^{s}.$$

N.B.: If $N(\cdot,\cdot) \leq ||\cdot|| \ ||\cdot||$, then $S \in \mathcal{B}(\mathcal{H}_m^s)$ is essentially self-adjoint and

$$\chi^{\pm}(S) = \int_{\sigma(S)} \chi(\lambda) dE_{\lambda}$$

Fermionic Projectors and the Hadamard condition

FP states in a strip of spacetime

- $\bullet \ \ \mathsf{Consider} \ \Omega \subset (-T,T) \times \Sigma \subset \mathcal{M} \ \mathsf{and} \ \mathcal{H}^s_m(\Omega) := \overline{\left(\mathcal{S}ol(\mathcal{D})\,,\, (\cdot \mid \cdot)^s_m\right)} \ .$
- The spacetime inner product: $\langle \cdot | \cdot \rangle$: $\mathcal{H}^s_m(\Omega) \times \mathcal{H}^s_m(\Omega) \to \mathbb{C}$

$$\begin{split} <\!\!\psi_{\mathbf{m}}|\varphi_{\mathbf{m}}\!\!> &= \int_{\Omega} \prec\!\!\psi_{\mathbf{m}}|\varphi_{\mathbf{m}}\!\!\succ_{\mathsf{x}} d\mu_{\Omega} & \text{(well defined)} \\ |<\!\!\varphi_{\mathbf{m}}|\psi_{\mathbf{m}}\!\!> &| \leq c \; \|\varphi_{\mathbf{m}}\|_{\mathbf{m}} \; \|\psi_{\mathbf{m}}\|_{\mathbf{m}} & \text{(bounded)}. \end{split}$$

• Then the Fermionic Signature operator is essentially self-adjoint and

$$\chi^{\pm}(\mathcal{S}) = \int_{\sigma} \chi^{\pm}(\lambda) dE_{\lambda} \quad \stackrel{Araki}{\Longrightarrow} \quad \omega_{FP} \text{ on } \mathcal{F}.$$

Problems:

- For $T \to \infty$ the spacetime inner product is not well defined,
- ω₂(x, y) is in general not Hadamard!
 [C. Fewster and B. Lang: "Pure quasifree states of the Dirac field from the fermionic projector".]

FP states and the mass oscillation property

The strong mass oscillation property

- Hilbert space: $\mathscr{H}^{\infty} = \left(\Psi := (\psi_m)_{m \in \mathbb{I} = (m_L, m_R)}, (\cdot, \cdot) = \int_{\mathbb{I}} (\cdot | \cdot)_m \, dm \right)$
- Smearing operator: $\mathfrak{p}:\mathscr{H}^{\infty}\to C^{\infty}_{\mathrm{sc}}(\mathcal{M},S\mathcal{M})\,,\quad \mathfrak{p}\Psi=\int_{I}\psi_{m}\,dm$
- Symmetric sesquilinear form: $\langle \mathfrak{p} \cdot | \mathfrak{p} \cdot \rangle$: $\mathscr{H}^{\infty} \times \mathscr{H}^{\infty} \to \mathbb{C}$

Q: Is the new sesquilinear form bounded?

• The strong mass oscillation property:

$$\begin{aligned} \left| \langle \mathfrak{p} \Psi \mid \mathfrak{p} \Phi \rangle \right| &\leq c ||\psi_{m}|| \, ||\varphi_{m}|| \\ \left| \langle \mathfrak{p} T \Psi \mid \mathfrak{p} \Phi \rangle \right| &= \left| \langle \mathfrak{p} \Psi \mid \mathfrak{p} T \Phi \rangle \right| \end{aligned}$$

where $T\Psi = (m\psi_m)_{m\in I}$ and $T\Phi = (m\varphi_m)_{m\in I}$.

 $\bullet \ \ \text{Family of linear operators} \ (\mathcal{S}_m)_{m \in I} \ \text{with} \ \mathcal{S}_m \in \mathcal{B}(\mathscr{H}_m^s) \ \text{and} \ \sup_{m \in I} \|\mathcal{S}_m\| < \infty$

$$m \mapsto (\psi_m \mid \mathcal{S}_m \varphi_m)_m$$
 is continuous $< \mathfrak{p}\Psi \mid \mathfrak{p}\Phi > = \int_I (\psi_m \mid \mathcal{S}_m \varphi_m)_m dm$

FP states and the strong mass oscillation property

[F. Finster, S. M., C. Röken: "The Fermionic Projector in a time-dependent external potential: mass oscillation property and Hadamard states".]

$$\begin{split} &i\partial_t \psi_m = -\gamma^0 (i\vec{\gamma}\vec{\nabla} + B(t,\vec{x}) - m)\psi_m =: H\psi_m \\ &\psi_m|_t = U_m^{t,t_0} \psi_0 + i \int_{t_0}^t U_m^{t,\tau} \left(\gamma^0 B \; \psi_m\right)\big|_\tau \; d\tau \end{split} \tag{Lippmann-Schwinger equation}$$

• Setting $B(t, \vec{x}) = 0$: the strong mass oscillation property holds and

$$\mathcal{B}(\mathscr{H}_{m}^{s})\ni\mathcal{S}_{m}(\vec{\xi}):=\sum_{\xi^{0}=\pm\omega(\vec{\xi})}\frac{\not\xi+m}{2\,\xi^{0}(\vec{\xi})}\,\gamma^{0}\Longrightarrow\underbrace{\chi^{+}\big(\mathcal{S}_{m}\big)=\Theta(\xi^{0})}_{\text{frequencies splitting}}$$

• Assuming $|B(t)|_{\mathcal{C}^2} \leq c \left(1+|t|^{2+\varepsilon}\right)^{-1}$ and $\int_{-\infty}^{\infty} |B(t)|_{\mathcal{C}^0} \, dt < \sqrt{2}-1$,

$$\mathcal{B}(\tilde{\mathscr{H}}_{m}^{s}) \ni \tilde{\mathcal{S}}_{m} \Rightarrow \chi^{\pm}(\tilde{\mathcal{S}}_{m}) = \chi^{\pm}(\mathcal{S}) + \frac{1}{2\pi i} \oint_{\partial B_{\frac{1}{2}}(\pm 1)} (\tilde{\mathcal{S}}_{m} - \lambda)^{-1} \Delta \tilde{\mathcal{S}} (\tilde{\mathcal{S}}^{D} - \lambda)^{-1} d\lambda.$$

integral operator with smooth kernel

FP states and the mass oscillation property

F. Finster, S. M., C. Röken: "The Fermionic Projector in a time-dependent external potential: mass oscillation property and Hadamard states"

- $\omega_2^{\text{vac}}(x,y)$ is Hadamard in Ω_0 and then in $\mathcal M$ via the prop. of singularities.
- $\check{\omega}_2(x,y) \omega_2^{\mathsf{vac}}(x,y) \in C^{\infty}(\mathbb{R}^4)$ for all $x,y \in \Omega_0$, since $\check{\mathcal{G}}_m(x,y) \equiv \mathcal{G}_m(x,y)$.
- $\breve{\omega}_2(x,y)$ is Hadamard in Ω_0 and then in \mathcal{M} via the prop. of singularities.
- $\omega_2(x,y) \breve{\omega}_2(x,y) \in C^{\infty}(\mathbb{R}^4)$ for all $x,y \in \Omega_1$, since $\widetilde{\mathcal{G}}_m(x,y) \equiv \breve{\mathcal{G}}_m(x,y)$.
- $\omega_2(x,y) = \omega_2(x,y) \in \mathcal{C}$ (\mathbb{R}) for all $x,y \in \Omega_1$, since $g_m(x,y) = g_m(x,y)$ • $\omega_2(x,y)$ is **Hadamard** in Ω_1 and then in \mathcal{M} via the prop. of singularities.
- Simone Murro (Universität Regensburg)

FP states via the Møller operator

(...still work in progress)

[N. Drago, S. M.: "A new class of Fermionic Projectors: Møller operators and mass oscillation properties".]

• Consider $P_V := \square - V$ and $P_{V'} := \square - V'$

$$P_{V'} = P_V + V - V' = P_V (Id + E_V^{\pm} (V - V'))$$

if (V-V') is compact or future/past compact.

- Møller operator: $R^{\pm}_{V',V}:=\left(\operatorname{Id}+E^{\pm}_{V}(V-V')\right)^{-1}:\operatorname{\mathcal{S}ol}(P_{V}) o\operatorname{\mathcal{S}ol}(P_{V'}).$
- Fix a Cauchy surface Σ , define $\varrho^+=1$ on $J^+(\Sigma_\varepsilon)\setminus\Sigma_\varepsilon$ and $\varrho^+=0$ on $J^-(\Sigma_\varepsilon)\setminus\Sigma_\varepsilon$, $\varrho^-=1-\varrho^+$ and introduce $m''(m,m'):=\varrho^+m'+m\varrho^-$

$$R_{m',m}^+ := Id - G_{m''}^{\pm}(m - m'') = Id - G_{m''}^{\pm}\varrho^+(m' - m)$$

$$R_{m',m''}^- := Id - G_{m'}^{\pm}(m'' - m') = Id - G_{m'}^{\pm}\varrho^-(m - m').$$

• Ultra Møller operator: $R_{m',m}:=R_{m',m''}^-\circ R_{m'',m}^+:\mathscr{H}_m\to\mathscr{H}_{m'}$

new families of solutions: $\psi_m \mapsto \Re \psi_m := (R_{\beta,m} \psi_m)_{\beta \in I}$

FP states via the Møller operator (...still work in progress)

[N. Drago, S. M.: "A new class of Fermionic Projectors: Møller operators and mass oscillation properties".]

• As before $\mathcal{H}_m^s := (Sol(\mathcal{D}), (\cdot | \cdot)_m^s)$ and let

$$\textit{N}(\cdot\ ,\cdot) = <\! \mathfrak{pR}\ \cdot | \mathfrak{pR} \cdot \!> : \mathcal{H}^{\textit{s}}_{\textit{m}} \times \mathcal{H}^{\textit{s}}_{\textit{m}} \to \mathbb{C}$$

If the weak mass oscillation property holds

$$N(\cdot,\cdot) \leq C(\cdot)||\cdot||,$$

then **Fermionic Signature Operator** is $S \in \mathcal{L}(\mathcal{H}_m^s)$ built out of

$$N(\cdot,\cdot) = (\cdot \mid \mathcal{S} \cdot)_m^s$$

• As before, we define the Fermionic Projector as

$$\chi^{\pm}(S) := \frac{1}{2|S|}(S \pm |S|).$$

Conclusions

What we know:

- Araki's lemmas: $\omega: \mathcal{F} \to \mathbb{C} \iff Q \in \mathcal{B}(\mathscr{H}_m^s)$;
- Spectral calculus: $\chi^{\pm}(\mathcal{S})\chi^{\pm}(\mathcal{S}) = \chi^{\pm}(\mathcal{S}) \quad \chi^{\pm}(\mathcal{S})\chi^{\mp}(\mathcal{S}) = 0$.

Benefit:

- No use of symmetries;
- Distinguished states.

Price to pay:

Not always available a sesquilinear form ⇒ mass oscillation property.

Future investigations:

Hadamard condition.