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@ The algebraic approach to QFT
@ Quasi-free states for CAR algebras

@ Fermionic Projector and the Hadamard condition:

o FP states in a strip of spacetime
o FP states and the mass oscillation property

o FP states via the Mgller operator
@ Conclusions

Based on:

» F. Finster, S. M., C. Roken: “The Fermionic Projector in a time-dependent external
potential: mass oscillation property and Hadamard states”

» N. Drago, S. M.: “A new class of Fermionic Projectors: Mgller operators and mass
oscillation properties.” (work in progress)
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Algebraic Quantum Field Theory

Algebraic Quantum Field Theory
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AQFT - |: Dirac field

Spinor bundle SM ~ M x C* and cospinor bundle $* M ~ M x (C*)*, with
M ~ R x X 4-dim globally hyperbolic spacetime :

ds®> = B?dt> — h;; B e C°(M;R") and h: € Riem(X);Vt € R.

Spinors ¢ € C(M,C*) and cospinors p € CX (M, (C*)*).

Dirac conjugation map: A : CSOCO(M,C4)(—’)CS‘°C°(M,(C4)*).

Spin scalar product: < - |- >, : C2(M,C*) x CZ(M,C*) - C

< Px = ((AY)P)(x).

@ spacetime inner product: <:|-> : CZ(M,C*) x C°(M,C*) — C

<p|¥> :/ <Y|9-x dpg
M
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AQFT - II: Dynamics

@ Dirac operator on SM and its dual on $*M:
DYm = (iv"V, + B — m)pm =0, D om = (—iv"V, + B — m)pm = 0.
@ Causal propagators: G : C2°(M, (CH™)) = CZ (M, (CH™)

PWoGM =0=6"o D(*)‘CSO(M,(CA)(*)
supp(G(F)) € J(supp(f)),  VF € CZ(M,(CH™)

@ Hilbert spaces:

M, = <Sol(D):%,(.|.)fni/z-<~|¢~>xd2)

He, = (So/(D*)) ~ %7 (- | ,)fn i/z.<A—1 AL - d):)
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AQFT - IIl: CAR Algebra

@ unital Borchers-Uhlmann x-algebra: A4 = @ (SO/(Dm) @SOI(D;))@(
k=0

- 1=1{1,0,0,. {o( ) ..},W(npm):{o,(wom),o,...}
- *-operation: {0,0, (Z:) ® (Qé:) ,...}* = {0,07 ('ﬁ:ﬁ"’) ® (A;;‘:’") ,}

@ We encode the CARs in the x-ideal Z C A generated by:
- O(¢m) ® O(Um) + O(Pm) © P(m)
- V(em) @ V(@m) + V(om) @ V(eom)
- V(pm) @ O(thm) + O(Um) @ V(om) = (A om | ¥m);, 1

@ Algebra of fields: F = %
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AQFT - IV: States

@ Algebraic state w : F — C such that: w(1) =1, w(h*h) >0, VheF.

N.B.: Choosing a state w is equivalent to assigning wn(h1, ..., h,) Vn € N and Vh; € F.

@ Quasi-free states: want1(h1, ..., h2ns1) =0

on,,(hl, ey hzn) Z ( 1 sign() H UJ2 o(2i—1) ho(2i))~

o€S;,
Question: Are all states physically acceptable?

Of course not! Minimal physical requirements are:
i) covariant construction of Wick polynomials to deal with interactions,
ii) same UV behaviour of the Minkowski vacuum,

i) finite quantum fluctuations of all observables.

Answer: Hadamard States
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AQFT - V: Hadamard States

A (quasi-free) state w satisfies the Hadamard condition if and only if

WF(Wz) = {(X,y,£X7£y) € T*M®2\O | (X,fx) ~ (ya _fy)’ §X[>0} .

Question: How many Hadamard states do we know?

deformation arguments

static spacetime

pseudodifferential calculus

holographic techniques

Question: Does there exist an explicit method that which

does not make use of use symmetries?
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Quasi-free states for

CAR algebras
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Quasi-free states for CAR algebras

Araki's characterisation

[H. Araki: “On quasifree states of CAR and Bogoliubov automorphisms”.]

Lemma 3.2: For any quasi-free state w on F there exists Q € B(.%};) satisfying
(2) w2 (V(em)®(m) = (A om | Qum),

(b) Q+AQA=1,

(€ 0<Q=0Q <1.

Lemma 3.3: Let Q be a bounded symmetric operator on 7, with the following
properties

(a) Q+AQA=1,
(b)) 0<Q=0Q <1.

Then there exists a unique quasi-free state w on F such that

w2 (Wlem)@(m)) = (A om | Qum),

@ Our motto will be = “Split the .7Zilbert space!” (...but how?)
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Quasi-free states for CAR algebras

The Fermionic Signature Operator

@ As before 15, := (Sol(D), (- | -);,) and let N(- ,-) : H5, x Hj, — C be a
symmetric and densely defined sesquilinear form satisfying :

a) N(,-) < COI- I

@ The Fermionic Signature Operator is S € L£(H;,) built out of the Riesz theorem

NG ) =18 )m

@ Taking S? := S*S , we construct the Fermionic Projector

1
+ T . ays s
x“(S) = 2|Sl(S:I: IS]) : Hom — Him.
N.B.: I N(- ) < [- || || - ||, then § € B(H3,) is essentially self-adjoint and

+ _
() = / ROV
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ionic Projectors and the Hadamard condition

Fermionic Projectors and

the Hadamard condition
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Fermionic Projectors and the Hadamard condition

FP states in a strip of spacetime

@ Consider Q C (=T, T) x £ C M and H5,(Q) := (Sol(D), (- | -),) -
@ The spacetime inner product: <-|-> : H;,(Q) x H,(Q) = C

<mlem> = [ <tm|pm>x dua (well defined)
|<<Pm|¢m>\ <c H‘Pm“m meHm (bounded).

@ Then the Fermionic Signature operator is essentially self-adjoint and

Araki

Xi(S) = / Xi()\) dE,\ — wep on F.
Problems:
@ For T — oo the spacetime inner product is not well defined,

@ wz(x,y) is in general not Hadamard!

[C. Fewster and B. Lang: “Pure quasifree states of the Dirac field from the fermionic
projector”.]
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Fermionic Projectors and the Hadamard condition

FP states and the mass oscillation property

The strong mass oscillation property

@ Hilbert space: 7% = (\Il = (Ym)mer=(mp,mg) » () =J; (|')m dm)

@ Smearing operator: p : A — CZ(M,SM), pV = [ mdm
@ Symmetric sesquilinear form: <p - |p-> : > x H#* = C

Q: Is the new sesquilinear form bounded?

@ The strong mass oscillation property:

|<pW [ p®>| < c|[¢oml|[|oml]
|<pTW|pd>| = |<pV |pTd>|

where TV = (M) mer and T® = (Mpm)mei.
@ Family of linear operators (Sm)mei with Sm € B(H) and sup,,,¢, [|Sm|| < oo

m > (Vm | Sm pm)m is continuous

<pUjpo> = / (o | Sm @) dim
1
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FP states and the strong mass oscillation property

[F. Finster, S. M., C. Rdken: “The Fermionic Projector in a time-dependent external potential:
mass oscillation property and Hadamard states”.]

i0ethm = —°(iFV + B(t,X) — m)thm =: Hom (Dirac equation)

t
Ymle = Usho + i/ Ut” ('yOB wm) ’T dr (Lippmann-Schwinger equation)
to

@ Setting B(t,X) = 0: the strong mass oscillation property holds and

s ) 52+ m o + 0
B(A7) 3 Sml€) = Y = 1" = X" (Sm) = 0(£")
go:iw(*) 260(6) _—

frequencies splitting

o Assuming |B(t)|cz < ¢ (1 +[¢***) ™" and [ [B(t)|codt < V2 -1,

B2 5 Em = X (Em) = () + 5 éB (Gm—2) P AS (S — )V dA.
%(il)

integral operator with smooth kernel
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Fermionic Projectors and the Hadamard condition

FP states and the mass oscillation property

F. Finster, S. M., C. Rdken: “The Fermionic Projector in a time-dependent external potential:
mass oscillation property and Hadamard states”

%, V4 . Joc
Bx)= C (R) Beo= xIRG) Bx=o0
7 7 7_’55,/‘/2

9

P=x"(S) G + (smooth) P = x*(S) Gm + (smooth) P = x"(S) G,

w3 (x,y) is Hadamard in Qo and then in M via the prop. of singularities.

Da(x,y) — wi(x,y) € CZ(R*) for all x,y € Qo, since Gm(x,y) = Gm(x, ).
2(x,y) is Hadamard in Qo and then in M via the prop. of singularities.

wa(x,y) — Ga(x,y) € CZ(R*) for all x,y € Qi, since Gm(x,y) = Gm(x,y).

w2(x,y) is Hadamard in Qi and then in M via the prop. of singularities.
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Fermionic Projectors and the Hadamard condition

FP states via the Mgller operator (... still work in progress)

[N. Drago, S. M.: “A new class of Fermionic Projectors: Mgller operators and mass oscillation
properties".]

@ Consider Py ;=0 — V and Py, :=0- V'
Pyi =Py +V -V =Py(ld+ ES(V - V')
if (V — V') is compact or future/past compact.
o Mgller operator: R, |, := (Id + EZ(V — V') ™" : Sol(Py) — Sol(Py).

@ Fix a Cauchy surface ¥, define ot =1 on JT(X.)\ Zc and ot =0 o0n J7(Z.)\ =,
0~ =1— 0" and introduce m”’(m, m') := o"m’ + mo~
Rt o= 1d — GE(m—m")y=1d -G, 0" (m —m)

R, wi=Id—GE(m" —m')=Id— G o (m—m').

m/7ml/
@ Ultra Mgller operator: Ry =R, ., oR', 50 — Sy

m’,m

new families of solutions:  m — Rpm := (Rg,m¥m)sel J
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Fermionic Projectors and the Hadamard condition

FP states via the Mgller operator (... still work in progress)

[N. Drago, S. M.: “A new class of Fermionic Projectors: Mgller operators and mass oscillation
properties".]
@ As before H;, = m and let
N(-,)=<pR - |pR > H,, x H;, —» C
@ If the weak mass oscillation property holds
N(,-) < COI- I,
then Fermionic Signature Operator is S € L£(#;,) built out of
NG )= (1S )m.
@ As before, we define the Fermionic Projector as

1
XT(S) = 3575 £ 15D
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Conclusions

Conclusions

What we know:

@ Araki’s lemmas: w: F—>C <<= QeB(4);
@ Spectral calculus: XE(S)xT(S) = xT(S)  xT(S)xT(S)=0.

Benefit:

@ No use of symmetries;

@ Distinguished states.

Price to pay:

@ Not always available a sesquilinear form = mass oscillation property.

Future investigations:

@ Hadamard condition.
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