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▶ In this conference, we have seen various different approaches
to interacting QFT models and various different mathematical
structures/methods to investigate these.

▶ Plan of this talk: Use ideas/methods from QFT to study a
mathematical problem derived from certain interacting QFT
models, but interesting in its own right.

▶ The models in the background are integrable models on
two-dimensional Minkowski space, defined by their 2-body
S-matrix (“S-matrix bootstrap”).

▶ The mathematical structure of central interest is the
Yang-Baxter equation (YBE) which is relevant to the
factorisation of a 3→ 3 scattering process into 2→ 2 processes.

▶ The YBE is also of prominent interest in many other fields:
statistical mechanics, subfactors, knot theory, quantum
information, braid groups ...

▶ Will investigate it here with tools from algebraic QFT.
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S-matrix is main input into S-matrix bootstrap: A continuous map
S ∶ R→ B(V⊗ V) (with V a finite-dim. Hilbert space labelling particle
species) such that

● S(θ)∗ = S(θ)−1 = S(−θ)

● S satisfies the Yang-Baxter equation (with spectral parameter):

S1(θ)S2(θ + θ′)S1(θ′) = S2(θ′)S1(θ + θ′)S2(θ)

with S1(θ) ∶= S(θ)⊗ idV and S2(θ) ∶= idV⊗S(θ)

● + further properties (analyticity, crossing, TCP symmetry, etc)

▶ Given any such S, one can construct a wedge-local QFT (cf.
Max’ talk) reproducing S as its 2-particle collision operator.

▶ To proceed to a local QFT, an additional “intertwiner property”
of S is required (under control for scalar dimV = 1 theories and
certain non-scalar ones).

3



S-matrix is main input into S-matrix bootstrap: A continuous map
S ∶ R→ B(V⊗ V) (with V a finite-dim. Hilbert space labelling particle
species) such that

● S(θ)∗ = S(θ)−1 = S(−θ)

● S satisfies the Yang-Baxter equation (with spectral parameter):

S1(θ)S2(θ + θ′)S1(θ′) = S2(θ′)S1(θ + θ′)S2(θ)

with S1(θ) ∶= S(θ)⊗ idV and S2(θ) ∶= idV⊗S(θ)

● + further properties (analyticity, crossing, TCP symmetry, etc)

▶ Given any such S, one can construct a wedge-local QFT (cf.
Max’ talk) reproducing S as its 2-particle collision operator.

▶ To proceed to a local QFT, an additional “intertwiner property”
of S is required (under control for scalar dimV = 1 theories and
certain non-scalar ones).

3



S-matrix is main input into S-matrix bootstrap: A continuous map
S ∶ R→ B(V⊗ V) (with V a finite-dim. Hilbert space labelling particle
species) such that

● S(θ)∗ = S(θ)−1 = S(−θ)

● S satisfies the Yang-Baxter equation (with spectral parameter):

S1(θ)S2(θ + θ′)S1(θ′) = S2(θ′)S1(θ + θ′)S2(θ)

with S1(θ) ∶= S(θ)⊗ idV and S2(θ) ∶= idV⊗S(θ)

● + further properties (analyticity, crossing, TCP symmetry, etc)

▶ Given any such S, one can construct a wedge-local QFT (cf.
Max’ talk) reproducing S as its 2-particle collision operator.

▶ To proceed to a local QFT, an additional “intertwiner property”
of S is required (under control for scalar dimV = 1 theories and
certain non-scalar ones).

3



In the scalar case (dimV = 1) [Bostelmann-L-Morsella '11]:

▶ One can proceed to a short distance scaling limit if

S± ∶= lim
θ→±∞

S(θ)

exist.
▶ One finds a massless chiral theory, possibly with a twist

between the lightrays encoded in S(0).
▶ The chiral components are generated by fields localized on half

lines. Obstructions to local observables arise from the
operators S±.

These structures generalize to the non-scalar setting [Scotford], but
now the structure of the matrices S(0),S+,S− can be more involved.

▶ Note: S(0),S± are R-matrices, i.e. unitary solutions to the
(constant) YBE

(R⊗ idV)(idV⊗R)(R⊗ idV) = (idV⊗R)(R⊗ idV)(idV⊗R)

Moreover, S(0) is involutive: S(0)2 = 1.
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An operator-algebraic setting for R-matrices

▶ A brute force approach to the YBE is hopeless. In components,
YBE is a coupled system of d6 cubic eqns for d4 variables.

▶ Need to embed R-matrices into a richer mathematical context.

▶ Plan: Given any R, define an endomorphism λR on a von
Neumann algebraM and consider the inclusion

λR(M) ⊂M.

In this way, we can use tools from operator algebras,
subfactors, and QFT (superselection theory).
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V ≅ Cd: finite-dim. Hilbert space. Define two v.Neumann algebras:

N ∶= EndV⊗ EndV⊗ . . . (infinite tensor product)
⊂M ∶= πω(OV)′′ (generated by Cuntz algebra)

N is weakly closed w.r.t. trace τ = TrV
d ⊗

TrV
d ⊗

TrV
d ⊗ ...

▶ Well-known fact: The unitary elements U of OV are in bijection
with the endomorphisms λU of OV. On N , this endo. is given by

λU(x) = lim
n→∞

Uφ(U)⋯φn(U) ⋅ x ⋅ φn(U∗)⋯φ(U∗)U∗.

▶ In particular, any R-matrix R ∈ EndV⊗ EndV ⊂ OV defines a
“Yang-Baxter endomorphism” λR ofM (preserving N ).

▶ Choosing U = F ∈ EndV⊗ EndV as the flip gives the canonical
endomorphism φ ∶= λF. On N it acts as a shift,

φ(x) = idV⊗x.
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Proposition
Let R ∈ EndV⊗EndV be unitary. Then R ∈R iff [Conti/Hong/Szym.'12]

R ∈ λ2R(M)′ ∩M.

In this case, πR(bn) ∶= φn−1(R) represents the braid group B∞ in N ,

bnbn±1bn = bn±1bnbn±1, bnbm = bmbn, ∣n −m∣ ≥ 2.

and λR coincides with φ on the von Neumann algebra LR ⊂ N
generated by the representation.

This structure is strongly reminiscent of braid group statistics in 2d
QFT [Fredenhagen-Rehren-Schroer '89, Longo '91], generalizing
permutation group statistics [DHR '71], and braided subfactors.
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. . . ⊂ λ2R(M) ⊂ λR(M) ⊂M
∪

. . . ⊂ λ2R(N ) ⊂ λR(N ) ⊂ N
∪

. . . ⊂ φ2(LR) ⊂ φ(LR) ⊂ LR
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Simple consequence of R ∈ λ2R(M)′ ∩M:

Lemma
λR is an automorphism (surjective) if and only if R = c ⋅ 1.

Thus, for non-trivial R

▶ the inclusion λR(M) ⊂M is non-trivial.

▶ It could still have trivial relative commutant λR(M)′ ∩M (then
λR is called irreducible).

▶ λR is not invertible, but has a left inverse ϕR, related to the
conditional expectation ER

ER ∶M→ λR(M) “projection onto subalgebra”
ϕR ∶= λ−1R ○ ER ∶M→M
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Questions:

▶ Find all unitary R-matrices (up to an equivalence relation).

▶ Describe all irreducible endomorphisms.

▶ Decompose YB endomorphisms into irreducible ones.

▶ Properties of YB endomorphisms: Index, ergodicity, ...

All of these are hard problems in general, but partial answers exist.
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Irreducibility and reduction

▶ For (ir)reducibility, one computes the first relative commutant

λR(M)′ ∩M = {x ∈ EndV ∶ R∗(x⊗ 1)R = 1⊗ x}

This gives a reduction scheme for reducible involutive R = R∗:

1. Pick a projection p ∈ λR(M)′ ∩M, i.e. R(p⊗ 1)R = 1⊗ p and
R(1⊗ p)R = p⊗ 1.

2. Have restrictions Rp,R⊥p of R to pV⊗ pV and p⊥V⊗ p⊥V.
3. Find

R ∼ Rp ⊞ R⊥p ∶=Rp ⊕ R⊥p ⊕ F
on(pV⊗ pV) ⊕ (p⊥V⊗ p⊥V) ⊕ (pV⊗ p⊥V)⊕ (p⊥V⊗ pV)

4. Repeat until Rp,R⊥p are irreducible.

Here ∼ means an equivalence relation on R defined by the
“intertwiner property”.
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Definition
Two R-matrices R,S are equivalent, R ∼ S, iff πR∣Bn ≅ πS∣Bn for all n.

With more work, get:

Theorem
Equivalence classes of involutive R-matrices are in 1:1
correspondence with R-matrices of normal form,

N =
m⊞
i=1

εi iddi

with signs {ε1, . . . , εm} ∈ {±1} and dimensions d1, . . . ,dm ∈ N.

▶ Analogies to DHR analysis of permutation group statistics.
▶ “Intertwiner problem” solved for finite-dimensional (purely

algebraic) case. Also solved for scalar (pure analytic) case.
General mixed case still open.

▶ In QFT models with constant S-matrix, get decomposition into
tensor products of free scalar Bose/Fermi theories [Scotford
'19].
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The Markov property

To understand (certain) non-involutive R-matrices, it is useful to
consider the matrix

ϕR(R) ∈ EndV.

Interesting facts:

▶ ϕR(R) can be computed explicitly as a partial trace of R, namely

ϕR(R) = ϕF(FRF) = (partial trace of the matrix R)

▶ If ϕR(R) = c ⋅ 1, then R is called Markov.

▶ ϕR(R) lies in the relative commutant of λR(M) ⊂M.
▶ Thus: λR irreducibleÔ⇒ R Markov.

Have straightforward sufficient condition for the Markov property:

Proposition
If R has no pair of opposite eigenvalues q, −q, then (M) holds.
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If R has no pair of opposite eigenvalues q, −q, then (M) holds.
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R-matrices with two eigenvalues

Consider R-matrices with two eigenvalues, say −1 and q.

▶ In this case, R must necessarily be selfadjoint or unitary.
Positivity of the braid group character τR defined by R requires

q ∈ {−1} ∪R+ ∪ {e±2πi/ℓ ∶ ℓ = 4,5,6, . . .}.

1−1

i

−i

eiπ/3

e−iπ/3

q > 0

[Wenzl 1988, Fredenhagen/Rehren/Schroer 1989, Ocneanu 1985]

▶ The case q = 1 is the case of involutive R, discussed before.
▶ Can be extended to q > 0 by deformation procedure.
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R-matrices with two eigenvalues −1 and q ≠ ±1

▶ All such R-matrices have the Markov property. (No pair of
opposite eigenvalues.)

▶ A Markov trace is uniquely fixed by the value τR(e1)
(with πR(e1) = eigen projection of R) [Jones '87].

▶ The possible Markov traces are known [Wenzl 1988],
[Fredenhagen/Rehren/Schroer 1989]

τR(e1) =
sin π(k−1)

ℓ

2 cos π
ℓ
sin πk

ℓ

, k ∈ {1, . . . , ℓ − 1}, q = e±iπ/ℓ.

Theorem

▶ Equivalence classes characterised by d, q, and its multiplicity.

▶ Unitary R-matrices with eigenvalues −1 and q ≠ ±1 exist if and
only if q = ±i or q = e±iπ/3.

▶ If q = ±i, then τR(e1) = 1
2 . If q = e

±iπ/3, then τR(e1) ∈ { 13 ,
1
2 ,

2
3}.
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An almost complete Theorem
The following families (1),(2a),(2b) (and maybe (3)) of equivalence
classes of R-matrices occur:

(1) q = ±i, dR ∈ 2N, τR(e1) = 1
2 ,

R ∼ −1 ± i2

⎛
⎜⎜⎜⎜
⎝

1 −1
1 −1
1 1

1 1

⎞
⎟⎟⎟⎟
⎠

⊠ 1k

(2a) q = e±iπ/3, dR ∈ 3N, τR(e1) = 1
3 , with R ∼ (−P + e

±iπ/3(1 − P)) ⊠ 1k,

P = 13

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 q̄2 1
1 q̄2 q̄2

1 1 1
q2 1 1

1 1 1
q2 1 q2

1 1 1
1 q̄2 1

q2 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠ 16



An almost complete Theorem
(...)

(2b) As (2a), but with P↔ (1 − P).

(3) There might be another class with q = e±iπ/3, τR(e1) = 1
2 . Then

necessarily dR ∈ {4,6,8, ...} and index= 4 (not Temperley-Lieb).

Cases (1),(2a),(2b) are irreducible, with index 2 and 3, respectively.

A more general analysis of R and its endomorphisms is work in
progress with R. Conti.
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Let’s finish with some advertisment



Job announcement

Within the GAPT research group at Cardiff University, we have
an open permanent position:

Lecturer in Pure Mathematics or Mathematical Physics
(Research & Teaching)

It is open to applications from various fields, including

▶ Mathematical Quantum Field Theory
▶ Operator Algebras
▶ . . .

Will be announced next week. For details, see

▶ www.cardiff.ac.uk/mathematics/about-us/job-vacancies

▶ www.lqp2.org/jobs

and please share with anybody who might be interested.

www.cardiff.ac.uk/mathematics/about-us/job-vacancies
www.lqp2.org/jobs

