Minimal index and dimension for $2-C^*$ -categories

Luca Giorgetti

Dipartimento di Matematica, Università di Roma Tor Vergata giorgett@mat.uniroma2.it

joint work with R. Longo (Uni Tor Vergata)

Göttingen, 03 Feb 2018

LQP41 "Foundations and Constructive Aspects of QFT"

Quantum Information

Physical motivation: Quantum Information (operator-algebraic setup)

Quantum system: non-commutative von Neumann algebra $\mathcal{M} \subset \mathcal{B}(\mathcal{H})$, (observables = self-adjoint part of \mathcal{M} , e.g., projections in $p \in \mathcal{M}$, $p = p^*p$)

Classical part: center of \mathcal{M} , denoted by $\mathcal{Z}(\mathcal{M}) := \mathcal{M}' \cap \mathcal{M}$, (here assumed to be finite-dimensional, $\mathcal{Z}(\mathcal{M}) \cong \mathbb{C}^n$)

$$\mathcal{M} \cong \bigoplus_{i=1,\dots,n} \mathcal{M}_i, \quad \mathcal{M}_i := p_i \mathcal{M} p_i, \quad p_i \in \mathcal{Z}(\mathcal{M})$$

canonical decomposition if p_i are minimal, and also $\mathcal{Z}(\mathcal{M}_i) \cong \mathbb{C}$, i.e., \mathcal{M}_i is a *factor* (\rightsquigarrow purely quantum part of the system) for every $i = 1, \ldots, n$.

e.g.
$$\bigoplus_{i=1,...,n} M_{k_i}(\mathbb{C})$$
 "multi-matrix" algebra, $M_{k_i}(\mathbb{C}) = k_i \times k_i$ matrices

(finite-dimensional C^* -algebra, living on $\bigoplus_i \mathbb{C}^{k_i}$, \sim "finite" quantum system)

Aim: develop the mathematical framework for (possibly) "infinite" systems, i.e., bigger and more non-commutative factors \mathcal{M}_i)

Luca Giorgetti (Uni Tor Vergata)

Quantum Information

States: linear maps $\varphi : \mathcal{M} \to \mathbb{C}$, unital $\varphi(\mathbb{1}) = 1$, positive $\varphi(a^*a) \ge 0$, $a \in \mathcal{M}$, normal, faithful.

Channels: (communication, information transfer) among two systems \mathcal{N} and \mathcal{M} , linear, unital, normal, completely positive maps $\alpha : \mathcal{N} \to \mathcal{M}$ so

 $\text{for every state } \varphi \text{ on } \mathcal{M}, \quad \alpha^{\#}(\varphi) := \varphi \circ \alpha \quad \text{is a state on } \mathcal{N}$

e.g., $\alpha = *$ -homomorphism (if injective then $\alpha = \iota : \mathcal{N} \hookrightarrow \mathcal{M}$), conditional expectation (if surjective and $\alpha^2 = \alpha$, then $\alpha = E : \mathcal{N} \to \mathcal{M}$), bimodule $_{\mathcal{N}}\mathcal{H}_{\mathcal{M}}$. (all examples of 1-arrows in suitable 2-categories, or bicategories)

In this setup (*arxiv:1710.00910* [Longo]) gives a mathematical derivation of Landauer's bound: lower bound on the amount of energy (heat) introduced in the system when 1 bit of information is deleted (logically irreversible operation)

either
$$E_{\alpha} = 0$$
 or $E_{\alpha} \ge \frac{1}{2}kT\log(2)$

 $k = {\rm Boltzmann's\ constant},\ T = {\rm temperature}$ \sim "solves" the paradox of Maxwell's demon [Bennet]

Mathematical needs: study a "dimension" D_{α} of a channel $\alpha : \mathcal{N} \to \mathcal{M}$

- how to **define** D_{α} ?
- is it multiplicative? namely D_{βoα} = D_β · D_α where N → M → L?
 we can also denote β ∘ α = β ⊗ α.
- is it additive? namely $D_{\alpha \oplus \beta} = D_{\alpha} + D_{\beta}$ where $\mathcal{N} \xrightarrow{\alpha, \beta} \mathcal{M}$?

In the special case of inclusions of factors $\iota : \mathcal{N} \hookrightarrow \mathcal{M}$ (called "subfactors") the dimension is a number, the square root of the **minimal index** (Jones' index)

$$d_{\iota} = \left[\mathcal{M} : \mathcal{N}\right]_{0}^{1/2}$$

Much more generally, a good notion of dimension is available for objects in "rigid" tensor C^* -categories [Longo-Roberts] provided the tensor unit object I is "simple" (factoriality assumption, indeed if $I = id_{\mathcal{M}} : \mathcal{M} \to \mathcal{M}$, $(id_{\mathcal{M}}, id_{\mathcal{M}}) = \mathcal{Z}(\mathcal{M})$).

• how about non-simple unit case? in particular, minimal index for non-factor inclusions $\iota : \mathcal{N} \hookrightarrow \mathcal{M}$?

Jones' index

Idea: \mathcal{N} , \mathcal{M} von Neumann algebras (possibly infinite-dimensional), $\mathcal{N} \subset \mathcal{M}$, unital. **Jones' index** $[\mathcal{M} : \mathcal{N}]$ measures the relative size of \mathcal{M} w.r.t. \mathcal{N} .

Examples

• inclusion of full matrix algebras (finite type I subfactor)

$$\mathcal{N} \subset \mathcal{M} \cong M_k(\mathbb{C}) \otimes \mathbb{1}_l \subset M_{\tilde{k}}(\mathbb{C}), \quad \tilde{k} = kl$$

then $[\mathcal{M}:\mathcal{N}] = \tilde{k}^2/k^2 = l^2$, dimension = l, and $[\mathcal{M}:\mathcal{N}] \in \{1,4,9,\ldots\}$.

• multi-matrix inclusion (not a subfactor, finite-dimensional algebras)

$$\mathcal{N} \subset \mathcal{M} \cong \bigoplus_{j=1,\dots,n} M_{k_j}(\mathbb{C}) \hookrightarrow \bigoplus_{i=1,\dots,m} M_{\tilde{k}_i}(\mathbb{C})$$

then $[\mathcal{M}:\mathcal{N}] = \|\Lambda\|^2$, dimension $= \|\Lambda\|$, where $\Lambda =$ "inclusion matrix", $m \times n$, and $[\mathcal{M}:\mathcal{N}] \in \{4\cos^2(\pi/q), q = 3, 4, 5, \ldots\} \cup [4, +\infty[.$

• $\mathcal{N} \subset \mathcal{M}$ type II_1 subfactor (infinite-dimensional von Neumann algebras, with a trace state $\operatorname{tr} : \mathcal{M} \to \mathbb{C}$, $\operatorname{tr}(ab) = \operatorname{tr}(ba)$, $a, b \in \mathcal{M}$) \rightsquigarrow Jones' index.

Jones' index

More generally [Kosaki]: for arbitrary factors \mathcal{N} , \mathcal{M} (possibly of type III) the index of $\mathcal{N} \subset \mathcal{M}$ is defined w.r.t. normal faithful conditional expectations $E : \mathcal{M} \to \mathcal{N}$ (in particular $E(n_1mn_2) = n_1E(m)n_2$ for $m \in \mathcal{M}$, $n_1, n_2 \in \mathcal{N}$) $\operatorname{Ind}(\mathcal{N} \subset \mathcal{M}) \in [1, +\infty].$

Examples of expectations: for $M_k(\mathbb{C}) \otimes \mathbb{1}_l \subset M_{kl}(\mathbb{C}) \cong M_k(\mathbb{C}) \otimes M_l(\mathbb{C})$, let $E = \mathrm{id}_k \otimes \mathrm{tr}_l$ "partial trace", or any $E = \mathrm{id}_k \otimes \varphi$, where φ state on $M_l(\mathbb{C})$.

Theorem (Longo, Hiai, Havet)

If a subfactor $\mathcal{N} \subset \mathcal{M}$ has finite index, i.e., admits some $E : \mathcal{M} \to \mathcal{N}$ with finite index, then \exists ! minimal conditional expectation $E_0 : \mathcal{M} \to \mathcal{N}$, i.e., such that

$$\operatorname{Ind}(\mathcal{N} \stackrel{E_0}{\subset} \mathcal{M}) \leq \operatorname{Ind}(\mathcal{N} \stackrel{E}{\subset} \mathcal{M})$$
 for every other E

and $[\mathcal{M}:\mathcal{N}]_0 := \operatorname{Ind}(\mathcal{N} \stackrel{E_0}{\subset} \mathcal{M})$ is called the minimal index of $\mathcal{N} \subset \mathcal{M}$.

${\sf Minimality} = {\sf sphericality}$

Let $\mathcal{N} \subset \mathcal{M}$ be a subfactor (infinite factors) with finite index, given $E : \mathcal{M} \to \mathcal{N}$ n.f. conditional expectation, then minimality of E is characterized as follows:

Theorem (Hiai, Longo-Roberts)

$$E = E_0 \quad \Leftrightarrow \quad E_{\uparrow \mathcal{N}' \cap \mathcal{M}} = E'_{\uparrow \mathcal{N}' \cap \mathcal{M}}$$
 "sphericality"

where we consider $\mathcal{N}\subset\mathcal{M}$ and $\mathcal{M}'\subset\mathcal{N}',$ the "dual" subfactor, and

$$\begin{split} E:\mathcal{M}\to\mathcal{N}, & E(\mathcal{N}'\cap\mathcal{M})=\mathcal{N}'\cap\mathcal{N}\cong\mathbb{C}\\ E':\mathcal{N}'\to\mathcal{M}', \ \text{``dual'' expectation}, & E'(\mathcal{N}'\cap\mathcal{M})=\mathcal{M}'\cap\mathcal{M}\cong\mathbb{C}. \end{split}$$

Moreover, E is "left" and E' is "right" in a tensor C^* -categorical (or better 2- C^* -categorical) reformulation.

Notice first that $\mathcal{N}' \cap \mathcal{M} = \{m \in \mathcal{M} : mn = nm, \forall n \in \mathcal{N}\}$ is an *intertwining* relation between $\iota : \mathcal{N} \hookrightarrow \mathcal{M}$ and itself, because $\iota(n) = n$, i.e., $\mathcal{N}' \cap \mathcal{M} = (\iota, \iota)$.

Why E is "left" and E' is "right"?

E, E' correspond to pairs of solutions r, \bar{r} of the **conjugate equations** for $\iota: \mathcal{N} \hookrightarrow \mathcal{M}$ (1-arrow in a 2-category), namely there is a "conjugate" 1-arrow $\bar{\iota}: \mathcal{M} \to \mathcal{N}$ and

$$r \in (\mathrm{id}_{\mathcal{N}}, \bar{\iota} \circ \iota), \quad \bar{r} \in (\mathrm{id}_{\mathcal{M}}, \iota \circ \bar{\iota}),$$

intertwining relations in \mathcal{N} and \mathcal{M} respectively, fulfilling the following identities in (ι, ι) and $(\bar{\iota}, \bar{\iota})$ respectively:

$$\bar{r}^*\iota(r) = \mathbb{1}_{\iota}, \quad r^*\bar{\iota}(\bar{r}) = \mathbb{1}_{\bar{\iota}}.$$

Then

$$\begin{split} E(t) &= (r^*r)^{-1} \cdot \iota(r^*)\iota\bar{\iota}(t)\iota(r) \quad \text{[Longo] indeed } \iota\bar{\iota} = \gamma \text{ is Longo's canonical endo} \\ E'(t) &= (\bar{r}^*\bar{r})^{-1} \cdot \bar{r}^*t\bar{r} \quad \text{[Baillet-Denizeau-Havet, Kawakami-Watatani]} \end{split}$$

for every $t \in (\iota, \iota)$, actually the fist makes sense for $t \in \mathcal{M}$, the second for $t \in \mathcal{N}'$.

The dimension of $\iota : \mathcal{N} \hookrightarrow \mathcal{M}$ (subfactor case) is $d = r^*r = \bar{r}^*\bar{r}$ (a number) and $d^2 = [\mathcal{M} : \mathcal{N}]_0$. Moreover:

Theorem (Longo, Kosaki-Longo)

- normalization: d = 1 if and only if $\mathcal{N} = \mathcal{M}$.
- multiplicativity: $\mathcal{N} \subset \mathcal{M} \subset \mathcal{M} \subset \mathcal{L}$ then the dimension of $\mathcal{N} \subset \mathcal{L}$ is d_1d_2 , hence in particular $E_0^{\mathcal{N} \subset \mathcal{M}} \circ E_0^{\mathcal{M} \subset \mathcal{L}} = E_0^{\mathcal{N} \subset \mathcal{L}}$.
- additivity: for every $p_1, p_2 \in \mathcal{N}' \cap \mathcal{M}$ such that $p_1 + p_2 = \mathbb{1}$, define $d_i :=$ dimension of $\mathcal{N}_i \subset \mathcal{M}_i$ where $\mathcal{N}_i := p_i \mathcal{N} p_i$, $\mathcal{M}_i := p_i \mathcal{M} p_i$, i = 1, 2. Then $d = d_1 + d_2$.

News: This is no longer true if \mathcal{N} or \mathcal{M} have a *non-trivial center* (e.g., $\mathcal{N} \subset \mathcal{M}$ multi-matrix inclusion), unless we consider not the "scalar dimension" (whose square is still the minimal index) but the **"dimension matrix"**.

Theorem (Havet, Teruya, Jolissaint)

Let $\mathcal{N} \subset \mathcal{M}$ be a finite index inclusion of von Neumann algebras, assume finite-dimensional centers and "connectedness", i.e., $\mathcal{Z}(\mathcal{N}) \cap \mathcal{Z}(\mathcal{M}) = \mathbb{C}\mathbb{1}$. Then $\exists ! E_0 : \mathcal{M} \to \mathcal{N}$ minimal, i.e.,

$$\|\operatorname{Ind}(\mathcal{N} \stackrel{E_0}{\subset} \mathcal{M})\| \leq \|\operatorname{Ind}(\mathcal{N} \stackrel{E}{\subset} \mathcal{M})\| \quad \textit{for every other } E$$

because $\operatorname{Ind}(\mathcal{N} \stackrel{E}{\subset} \mathcal{M}) \in \mathcal{Z}(\mathcal{M})$ in general. Moreover, $\operatorname{Ind}(\mathcal{N} \stackrel{E_0}{\subset} \mathcal{M}) = c\mathbb{1}$ and $c = \|\operatorname{Ind}(\mathcal{N} \stackrel{E_0}{\subset} \mathcal{M})\|$ (a number) =: minimal index of $\mathcal{N} \subset \mathcal{M}$.

Questions: How to characterize minimality of E? properties of the minimal index? does it admit a 2- C^* -categorical formulation (hence generalization)? (what does "standard" solution of the conjugate equations mean?)

$$E: \mathcal{M} \to \mathcal{N}, \quad E(\mathcal{N}' \cap \mathcal{M}) = \mathcal{N}' \cap \mathcal{N} = \mathcal{Z}(\mathcal{N})$$
$$E': \mathcal{N}' \to \mathcal{M}', \quad E'(\mathcal{N}' \cap \mathcal{M}) = \mathcal{M}' \cap \mathcal{M} = \mathcal{Z}(\mathcal{M}),$$
$$E_{\uparrow \mathcal{N}' \cap \mathcal{M}} = E'_{\uparrow \mathcal{N}' \cap \mathcal{M}} \quad ??$$

Luca Giorgetti (Uni Tor Vergata)

Theorem (LG-Longo)

Let $\mathcal{N} \subset \mathcal{M}$, let p_1, \ldots, p_n minimal central projections in \mathcal{M} , also called atoms in $\mathcal{Z}(\mathcal{M})$, and q_1, \ldots, q_m atoms in $\mathcal{Z}(\mathcal{N})$. Then

$$E = E_0 \quad (i.e., E' = E'_0) \quad \Leftrightarrow \quad \omega_l \circ E_{\upharpoonright \mathcal{N}' \cap \mathcal{M}} = \omega_r \circ E'_{\upharpoonright \mathcal{N}' \cap \mathcal{M}}$$

where ω_l and ω_r are uniquely determined (connectedness) states on $\mathcal{Z}(\mathcal{N})$ and $\mathcal{Z}(\mathcal{M})$ respectively, called "left" and "right" state of $\mathcal{N} \subset \mathcal{M}$.

Let $\omega_s := \omega_l \circ E = \omega_r \circ E'$ on $\mathcal{N}' \cap \mathcal{M}$ and call it "spherical state" of $\mathcal{N} \subset \mathcal{M}$, then ω_s is a tracial and

 $\omega_s(\cdot)\mathbb{1} = s\text{-}lim\{EE'EE'EE'\ldots\}$

i.e., the projection $\mathcal{N}'\cap\mathcal{M}\to\mathcal{Z}(\mathcal{N})\cap\mathcal{Z}(\mathcal{M})=\mathbb{C}1$.

- do $\omega_{l/r/s}$ depend on $\mathcal{N} \subset \mathcal{M}$ or on \mathcal{N} , \mathcal{M} alone?
- can we categorize ω_s ? (hence the minimality of E and the dimension)
- is it more data or can we derive it? how to compute the minimal index?

Minimal index and dimension (finite-dimensional centers)

Continued:

Theorem (LG-Longo)

For every i = 1, ..., n, j = 1, ..., m, if $p_i q_j \neq 0$, observe that $p_i q_j \in \mathcal{Z}(\mathcal{N}' \cap \mathcal{M})$, set $\mathcal{N}_{ij} := p_i q_j \mathcal{N} p_i q_j$ and $\mathcal{M}_{ij} := p_i q_j \mathcal{M} p_i q_j$, then $\mathcal{N}_{ij} \subset \mathcal{M}_{ij}$ is a subfactor. Set

 $D := (d_{ij})_{i,j}$ $m \times n$ matrix, called "dimension matrix" of $\mathcal{N} \subset \mathcal{M}$

where $d_{ij} :=$ dimension of $\mathcal{N}_{ij} \subset \mathcal{M}_{ij}$ (quantized as in Jones' theorem), or $d_{ij} := 0$ if $p_i q_j = 0$. Then then minimal index of $\mathcal{N} \subset \mathcal{M}$ equals

 $d^2 = \|D\|^2, \quad d := \|D\|$ "scalar dimension" of $\mathcal{N} \subset \mathcal{M}$

and the (unique, l^2 -normalized) Perron-Frobenius eigenvectors

$$D^{t} D \sqrt{\nu} = d^{2} \sqrt{\nu}$$
$$D D^{t} \sqrt{\mu} = d^{2} \sqrt{\mu}$$

and $\nu_j = \omega_l(q_j)$, $\mu_i = \omega_r(p_i)$ are the left/right states of $\mathcal{N} \subset \mathcal{M}$.

Moreover:

- the states $\omega_{l/r/s}$ do depend on the inclusion (even for multi-matrices).
- we can reconstruct E_0 (i.e., the "standard" solution of the conjugate eqns. for $\iota : \mathcal{N} \hookrightarrow \mathcal{M}$) out of the minimal expectations in $\mathcal{N}_{ij} \subset \mathcal{M}_{ij}$ and an expectation matrix Λ determined by D and by P-F data:

$$\lambda_{ij} := \frac{d_{ij}}{d} \frac{\sqrt{\mu_i}}{\sqrt{\nu_j}} \quad \text{i.e.} \quad r = \bigoplus_{i,j} \frac{\sqrt[4]{\mu_i}}{\sqrt[4]{\nu_j}} r_{ij}$$

where r_{ij}, \bar{r}_{ij} are the standard solutions for $\iota_{ij} : \mathcal{N}_{ij} \hookrightarrow \mathcal{M}_{ij}$.

• additivity: D of $\mathcal{N} \subset \mathcal{M}$ is $D = D_1 + D_2$ if D_1 , D_2 correspond to $p_1, p_2 \in \mathcal{N}' \cap \mathcal{M}$, $p_1 + p_2 = \mathbb{1}$. But $d \neq d_1 + d_2$ in general. Indeed $d^2 = d_1^2 + d_2^2$ if \mathcal{N} or \mathcal{M} is a factor and p_1, p_2 are minimal in $\mathcal{Z}(\mathcal{M})$ or $\mathcal{Z}(\mathcal{N})$, i.e., the index itself may be additive. More generally

$$d = \sum_{i,j} d_{ij} \sqrt{\nu_j} \sqrt{\mu_i}.$$

- multiplicativity: Let $\mathcal{N} \subset \mathcal{M} \subset \mathcal{L}$ then D of $\mathcal{N} \subset \mathcal{L}$ is $D = D_2 D_1$ where D_1 and D_2 correspond to the intermediate inclusions, i.e., the (matrix) dimension is multiplicative. But $d \neq d_1 d_2$ in general. However $d \leq d_1 d_2$ and equality holds if $\nu^{\mathcal{M} \subset \mathcal{L}} = \mu^{\mathcal{N} \subset \mathcal{M}}$, e.g., if \mathcal{M} is a factor. If \mathcal{N} and \mathcal{L} are factors then $d = \cos(\alpha) d_1 d_2$, where $\alpha :=$ angle between vectors D_1 and D_2 .
- we have a theory of dimension for rigid 2-*C**-categories with finite-dimensional "centers", how about **infinite-dimensional** ones?
- further applications of "standard" Q-systems to finite index non-factorial extensions of QFTs? (cf. construction of theories with "defects" [B-K-L-R]).