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Introduction

In AQFT, R1+3 models are specified through Haag-Kastler axioms.
Let H be a fixed Hilbert space and R1+3 ⊃ O 7→ A(O) ⊂ B(H) be a
map from the family of open causally closed regions in R1+3, to von
Neumann algebras on H s.t. the following hold:

1. Isotony : if O1 ⊂ O2, then A(O1) ⊂ A(O2)

2. Locality : if O1 ⊂ O ′2, then A(O1) ⊂ A(O2)′

3. Poincaré covariance and Positivity of the energy : there exists a
unitary, positive energy representation of the Poincaré group P↑+
acting covariantly on the net A, namely

U(g)A(O)U(g)∗ = A(gO), ∀g ∈ P↑+

4. Existence and uniqueness of the vacuum: there exists a unique (up

to a phase) vector Ω ∈ H s.t. U(P↑+)Ω = Ω

5. Reeh-Schlieder : A(O)Ω is dense in H



Introduction about models

We have two main characteristics in the model

I the algebraic structure A : O 7→ A(O)

I the geometric structure U : P↑+ → U(H)

Besides we recognize another character which is the vacuum state
ω = 〈Ω, ·Ω〉.
About the algebraic structure: Tomita-Takesaki theory.
Given an von Neumann algebra A ⊂ B(H) and a cyclic and separating
vector Ω ∈ H we can define the Tomita operator SH , closure of the
densely defined anti-linear involution:

H ⊃ AΩ 3 aΩ 7−→ a∗Ω ∈ AΩ ⊂ H

and a polar decomposition SA,Ω = JA,Ω∆
1/2
A Ω. JA,Ω modular

conjugation and ∆A,Ω modular operator. They satisfy

JA,Ω∆A,ΩJA,Ω = ∆−1
A,Ω.

We have that

JA,ΩAJA,Ω = A′ and ∆it
A,ΩA∆−itA,Ω = A



Introduction about the geometry

Let Wα = {x ∈ R1+3 : |x0| < xα} be a wedge in the direction xα,
Λα be the pure Lorentz one-parameter group of boosts fixing Wα.
For instance we associate to W3 the one parameter group of boosts

Λ3(t)(p0, p1, p2, p3) = (cosh(t)p0+sinh(t)p3, p1, p2, sinh(t)p0+cosh(t)p3)

x3

t

W3W ′3

Sets of wedges: W = P↑+W3, W0 = L↑+W3.

ΛW : the boosts associated to W ∈ W.



Introduction

Bisognano-Wichmann property [BW76]

U(ΛW (2πt)) = ∆−itA(W ),Ω

Non-commutative structure + local algebras are type III

Modular covariance [BGL94]

∆−itA(W ),ΩA(O)∆it
A(W ),Ω = A(ΛW (2πt)O)

Given the algebraic structure and the vacuum state, the modular
structure has a geometrical meaning [BGL95].

In particular modular covariance ensures the reconstruction of a unitary

positive energy Poincaré representation + PCT opertor



Motivations

The Bisognano-Wichmann property is a natural requirement:

I Holds in Wightman fields [BW76]

I Gives a canonical structure to free fields [BGL02]

I Deduced by asymptoptic completeness [M01]

I Implies correct Spin-Statistics relation [GL95]

I Holds in conformal theories [GL96]

I Unnatural counterexample [Y94]

I Implies Essential Duality, i.e. A(W )′ = A(W ′) [BGL94]

Question: Can the B-W property be deduced by the axioms?

We propose an algebraic approach to the B-W property: we provide an

algebraic sufficient condition on the covariant representation for the B-W

property in the generalized one-particle - standard subspace - setting.



Standard Subspaces Araki, Brunetti, Eckmann, Guido, Longo, Osterwalder...

We start our discussion noticing that the modular theory of a von
Neumann algebra is contained in its real structure.

A real linear closed subspace of an Hilbert space H ⊂ H is called
standard if it is cyclic (H + iH = H) and separating (H ∩ iH = {0}).
Symplectic complement: H ′ = {ξ ∈ H : I〈ξ, η〉 = 0,∀η ∈ H}

Analogue property to von Neumann algebras:

I A ⊂ B(H), Ω ∈ H is cyclic and separating iff HA = AsaΩ is cyclic
and separating

I let aΩ ∈ HA = AsaΩ, bΩ ∈ HA′ = A′saΩ, then

〈aΩ, bΩ〉 = 〈bΩ, aΩ〉

thus =〈aΩ, bΩ〉 = 0



Standard Subspaces Araki, Brunetti, Echmann, Guido, Longo, Osterwalder...

Let H be a standard subspace. The associated Tomita operator is the
closed anti-linear involution

SH : H + iH 3 ξ + iη 7−→ ξ − iη ∈ H + iH.

Its polar decomposition SH = JH∆
1/2
H is s.t.

JH∆HJH = ∆−1
H , ∆it

HH = H, JHH = H ′.

There is a 1-1 correspondence SH ←→ (JH ,∆H)←→ H.

Analogy with the Tomita-Takesaki theory.
Let A ⊂ B(H) be v.N.a. with a cyclic and separating vector Ω and
H = AsaΩ. Then SA,Ω = SH coincide: let a = a1 + ia2 with a1,2 ∈ Asa

SA,ΩaΩ = SA,Ω(a1 + ia2)Ω

= (a1 − ia2)Ω

= SH(a1Ω + ia2Ω)

Subspaces do not necessary come from a von Neumann algebra.



Standard subspaces Poincaré covariant nets
A U-covariant net of standard subspaces H on the set W of wedge
regions of the Minkowski spacetime is a map

H :W 3W 7−→ H(W ) ⊂ H

that associates a closed real linear subspace H(W ) with each W ∈ W,
satisfying:

1. Isotony: if W1 ⊂W2 then H(W1) ⊂ H(W2);

2. Locality: For every wedge W ∈ W we have

H(W ′) ⊂ H(W )′

3. Poincaré covariance and Positivity of the energy:
U(g)H(W ) = H(gW ), g ∈ P↑+ and U has positive energy;

4. Reeh-Schlieder property: H(W ) is cyclic ∀W ∈ W;

Nets satisfying 1.-4. will be denoted by (U,H)

5. Bisognano-Wichmann property:

∆it
H(W ) = U

(
ΛW (−2πt)

)
, ∀ W ∈ W ;



Standard subspaces Poincaré covariant nets
(at least) two reasons to study nets of standard subspaces:

1. they contain the modular structure of von Neumann algebras net
A(O) 7→ H(O) = A(O)saΩ

2. they define one particle nets
Scalar massive particle

H(O) = {f ∈ C∞(R1+3) : supp f ⊂ O}

Scalar product:

〈f , g〉 =

∫
f̂ (p)ĝ(p)δ(p2 −m2)θ(p0)dp

Then second quantization gives the free field. Not Canonical!

Canonical one-particle net associated to a particle [BGL02]

U (anti-)unitary positive energy representation of P+

l 1-1
One particle nets satisfying B-W property



An algebraic condition for the B-W property

I We expect that under some conditions on the Poincaré
representation, the canonical (generalized) one-particle net is
“unique”.

I One way to face this problem is to consider analytic extensions of
wave functions (cf. Mund 2001 + Buchholz, Epstein 1985).
There are some difficulties in extending the result to infinite
multiplicity and direct integrals and to the massless case.

I We will provide an algebraic condition called modularity condition
on a unitary p.e.r. of P↑+, sufficient to conclude B-W property on
any standard subspace net the representation acts on.



2. A sufficient condition for the B-W property



An algebraic condition for the B-W property

Definition
A unitary, P↑+-p.e.r. U is modular if for any U-covariant net of standard
subspaces H, namely any couple (U,H) the B-W property holds.

Definition

I G 0
3 =̇{g ∈ L↑+ : gW3 = W3} the subgroup of L↑+ elements fixing W3.

I G3 = 〈G 0
3 , T 〉, where T is the R1+3-translation group.

I For a general wedge W ∈ W, G 0
W and GW are defined by the

transitive action of P↑+ on wedges.

Definition
A unitary, positive energy P↑+-representation U satisfies the modularity

condition if r ∈ P↑+ s.t. rW = W ′

U(r) ∈ U(GW )′′. (MC)



A first remark

I It is sufficient to fix W = W3 and r = R1(π), thus (MC) becomes

U(R1(π)) ∈ U(G3)′′.

I For (almost) every p = (p0, p1, p2, p3) in the forward light cone

V
+

= {p ∈ R1+3 : p · p ≥ 0}

R1(π)p =(p0, p1,−p2,−p3)

=Λ3(tp)(p0, p1,−p2, p3)

=Λ3(tp)R3(θp)(p0, p1, p2, p3)

(1)

for a propery tp ∈ R and θp ∈ [0, 2π].

I G 0
3 = 〈Λ3,R3〉 and in particular R1(π) is an automorphism of a.e.

orbits of G 0
3 on V

+
.



Modularity condition

Proposition
Let (U,H) be a Poincaré covariant net of standard subspaces. The
strongly continuous map

ZH(W3) : R 3 t 7→ ∆it
H(W3)U(Λ3(2πt)).

is a one-parameter group and ZH(W3)(t) ∈ U(G3)′.

Theorem
Let U be a unitary p.e.r. of the Poincaré group P↑+. If the condition (MC)

U(R1(π)) ∈ U(G3)′′

holds on U, then any local U-covariant net of standard subspaces,
satisfies the Bisognano-Wichmann property. In particular U is modular.

Idea of the proof: ZH(W3) commutes with U(R1(π)), then ZH(W3) ≡ 1
and B-W property holds.



The modularity condition

The condition (MC) can be extended easily to more general
representations.

Proposition
Let U and {Ux}x∈X be unitary p.e.r. of P↑+ satisfying (MC). Let K be
an Hilbert space, Let (X , µ) be a standard measure space.Then

I (MC) holds for U ⊗ 1K ∈ B(H⊗K).

I If Ux |GW
and Uy |GW

are disjoint for µ-a.e. x 6= y . Then

U =

∫
X

Uxdµ(x) satisfies (MC).

Proposition
Assume that U satisfies (MC), then for every (U,H) the essential duality
holds, namely A(W ′) = A(W )′.



The modularity condition - the scalar case
The scalar representations have the following form

(Um,0(a, g)φ)(p) = e iapφ(g−1p), (a, g) ∈ R1+3 o L↑+ = P↑+,

where
φ ∈ Hm,0=̇L2(Ωm, δ(p2 −m2)θ(p0)d4p),

and Ωm = {p = (p0, p) ∈ R1+3 : p2 = p2
0 − p2 = m2, p0 ≥ 0}, m ≥ 0.

Proposition
Let U be a unitary, positive energy, irreducible scalar representation of
the Poincaré group. Then U satisfies the modularity condition (MC)
U(R1(π)) ∈ U(G3)′′.

Proof uses that translation unitaries T generate MASA and G 0
3 -orbits are

R1(π)-invariant

Theorem
Let U =

∫
[0,+∞)

Umdµ(m) where {Um} are (finite or infinite) multiples of

the scalar representation of mass m, then U satisfies (MC). In particular
the B-W property hold for every (U,H) .



3. Counterexamples and remarks



Counter-example

Counterexamples to modular covariance seem not so natural in Poincaré
covariant framework (see for instance Yngvason 1994).

Counterexamples to B-W (with modular covariance). Let V be a K−real,

bosonic, unitary representation of L↑+ on an Hilbert space K = K + iK .

Let U0 be the scalar, unitary irreducible representation of P↑+.

W 7→ H0(W ) ∈ H

the canonical BGL-net associated to U0.
We can define the new standard subspaces net

H̃ : W 7−→ K ⊗ H0(W ) ⊂ H̃=̇K ⊗H

There are two representations acting on H̃:

UI : P̃↑+ 3 (a,A) 7−→ 1K ⊗ U0(a,A) ∈ U(H̃)

UV : P̃↑+ 3 (a,A) 7−→ V (A)⊗ U0(a,A) ∈ U(H̃)



Remarks

I Bisognano-Wichmann property holds for UI (not for UV ).

I If U0 is massive, UV has infinitely many spins (possibly with finite
multiplicity)

I if U0 is massless, UV is direct integral of infinite spin representations
[LMR16]

I (MC) holds for scalar representations in R1+s , s ≥ 3

I (MC) holds for irreducible finite helicity representations ⇒ No
one-particle nets associated (polarizations have to be combined)

I (MC) has to be generalized to include (at least) finite sum of
spinorial representations

I Can (MC) be used to prove B-W for more general nets of von
Neumann algebras?


