A sufficient condition for the Bisognano-Wichmann property ¹

Vincenzo Morinelli

University of Rome "Tor Vergata"

41th LQP workshop Göttingen, 3 February 2018

¹ "The Bisognano-Wichmann property on nets of standard subspaces, some sufficient conditions", Annales Henri Poincaré (2017), https://doi.org/10.1007/s00023-017-0636-4, arXiv:1703.06831

- 1. Introduction: models, standard subspaces, one-particle nets
- 2. An algebraic condition for the B-W property on (generalized) one-particle nets
- 3. Counterexamples and remarks

1. Introduction

Introduction

In AQFT, \mathbb{R}^{1+3} models are specified through Haag-Kastler axioms. Let \mathcal{H} be a fixed Hilbert space and $\mathbb{R}^{1+3} \supset \mathcal{O} \mapsto \mathcal{A}(\mathcal{O}) \subset \mathcal{B}(\mathcal{H})$ be a map from the family of open causally closed regions in \mathbb{R}^{1+3} , to von Neumann algebras on \mathcal{H} s.t. the following hold:

- 1. Isotony: if $\mathcal{O}_1 \subset \mathcal{O}_2$, then $\mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)$
- 2. Locality: if $\mathcal{O}_1 \subset \mathcal{O}_2'$, then $\mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2)'$
- 3. Poincaré covariance and Positivity of the energy: there exists a unitary, positive energy representation of the Poincaré group \mathcal{P}_+^{\uparrow} acting covariantly on the net \mathcal{A} , namely

$$U(g)\mathcal{A}(O)U(g)^*=\mathcal{A}(gO), \quad orall g\in \mathcal{P}_+^\uparrow$$

- Existence and uniqueness of the vacuum: there exists a unique (up to a phase) vector Ω ∈ H s.t. U(P[↑]₊)Ω = Ω
- 5. Reeh-Schlieder: $\mathcal{A}(O)\Omega$ is dense in \mathcal{H}

Introduction about models

We have two main characteristics in the model

- the algebraic structure $\mathcal{A}: \mathcal{O} \mapsto \mathcal{A}(\mathcal{O})$
- the geometric structure $U : \mathcal{P}^{\uparrow}_+ \to \mathcal{U}(\mathcal{H})$

Besides we recognize another character which is the vacuum state $\omega = \langle \Omega, \cdot \Omega \rangle$.

About the algebraic structure: Tomita-Takesaki theory.

Given an von Neumann algebra $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ and a cyclic and separating vector $\Omega \in \mathcal{H}$ we can define the Tomita operator S_H , closure of the densely defined anti-linear involution:

$$\mathcal{H} \supset \mathcal{A}\Omega \ni a\Omega \longmapsto a^*\Omega \in \mathcal{A}\Omega \subset \mathcal{H}$$

and a polar decomposition $S_{\mathcal{A},\Omega} = J_{\mathcal{A},\Omega} \Delta_{\mathcal{A}\Omega}^{1/2}$. $J_{\mathcal{A},\Omega}$ modular conjugation and $\Delta_{\mathcal{A},\Omega}$ modular operator. They satisfy

$$J_{\mathcal{A},\Omega}\Delta_{\mathcal{A},\Omega}J_{\mathcal{A},\Omega}=\Delta_{\mathcal{A},\Omega}^{-1}.$$

We have that

$$J_{\mathcal{A},\Omega}\mathcal{A}J_{\mathcal{A},\Omega}=\mathcal{A}' \quad \text{and} \quad \Delta^{it}_{\mathcal{A},\Omega}\mathcal{A}\Delta^{-it}_{\mathcal{A},\Omega}=\mathcal{A}$$

Introduction about the geometry

Let $W_{\alpha} = \{x \in \mathbb{R}^{1+3} : |x_0| < x_{\alpha}\}$ be a **wedge** in the direction x_{α} , Λ_{α} be the pure Lorentz one-parameter group of **boosts** fixing W_{α} . For instance we associate to W_3 the one parameter group of boosts

 $\Lambda_3(t)(p_0, p_1, p_2, p_3) = (\cosh(t)p_0 + \sinh(t)p_3, p_1, p_2, \sinh(t)p_0 + \cosh(t)p_3)$

Sets of wedges: $W = \mathcal{P}^{\uparrow}_{+}W_3$, $W_0 = \mathcal{L}^{\uparrow}_{+}W_3$. Λ_W : the **boosts** associated to $W \in W$.

Introduction

Bisognano-Wichmann property [BW76]

$$U(\Lambda_W(2\pi t)) = \Delta_{\mathcal{A}(W),\Omega}^{-it}$$

Non-commutative structure + local algebras are type III

Modular covariance [BGL94]

$$\Delta_{\mathcal{A}(W),\Omega}^{-it}\mathcal{A}(O)\Delta_{\mathcal{A}(W),\Omega}^{it}=\mathcal{A}(\Lambda_W(2\pi t)O)$$

Given the algebraic structure and the vacuum state, the modular structure has a geometrical meaning [BGL95].

In particular modular covariance ensures the reconstruction of a unitary positive energy Poincaré representation + PCT opertor

Motivations

The Bisognano-Wichmann property is a **natural** requirement:

- Holds in Wightman fields [BW76]
- Gives a canonical structure to free fields [BGL02]
- Deduced by asymptoptic completeness [M01]
- Implies correct Spin-Statistics relation [GL95]
- Holds in conformal theories [GL96]
- Unnatural counterexample [Y94]
- ▶ Implies Essential Duality, i.e. $\mathcal{A}(W)' = \mathcal{A}(W')$ [BGL94]

Question: Can the B-W property be deduced by the axioms?

We propose an algebraic approach to the B-W property: we provide an algebraic sufficient condition on the covariant representation for the B-W property in the generalized one-particle - standard subspace - setting.

Standard Subspaces Araki, Brunetti, Eckmann, Guido, Longo, Osterwalder...

We start our discussion noticing that the modular theory of a von Neumann algebra is contained in its real structure.

A real linear closed subspace of an Hilbert space $H \subset \mathcal{H}$ is called standard if it is *cyclic* $(\overline{H + iH} = \mathcal{H})$ and *separating* $(H \cap iH = \{0\})$. Symplectic complement: $H' = \{\xi \in \mathcal{H} : \Im\langle \xi, \eta \rangle = 0, \forall \eta \in H\}$

Analogue property to von Neumann algebras:

- $\mathcal{A} \subset \mathcal{B}(\mathcal{H}), \ \Omega \in \mathcal{H}$ is cyclic and separating iff $H_A = \overline{\mathcal{A}_{sa}\Omega}$ is cyclic and separating
- ► let $a\Omega \in H_A = \overline{A_{sa}\Omega}$, $b\Omega \in H_{A'} = \overline{A'_{sa}\Omega}$, then

$$\langle a\Omega, b\Omega \rangle = \langle b\Omega, a\Omega \rangle$$

thus $\Im \langle a\Omega, b\Omega \rangle = 0$

Standard Subspaces Araki, Brunetti, Echmann, Guido, Longo, Osterwalder...

Let H be a standard subspace. The associated Tomita operator is the closed anti-linear involution

$$S_H: H + iH \ni \xi + i\eta \longmapsto \xi - i\eta \in H + iH.$$

Its polar decomposition $S_H = J_H \Delta_H^{1/2}$ is s.t.

$$J_H \Delta_H J_H = \Delta_H^{-1}, \qquad \Delta_H^{it} H = H, \qquad J_H H = H'.$$

There is a 1-1 correspondence $S_H \longleftrightarrow (J_H, \Delta_H) \longleftrightarrow H$.

Analogy with the Tomita-Takesaki theory. Let $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ be v.N.a. with a cyclic and separating vector Ω and $\mathcal{H} = \overline{A_{sa}\Omega}$. Then $S_{\mathcal{A},\Omega} = S_{\mathcal{H}}$ coincide: let $a = a_1 + ia_2$ with $a_{1,2} \in \mathcal{A}_{sa}$

$$S_{\mathcal{A},\Omega} a\Omega = S_{\mathcal{A},\Omega} (a_1 + ia_2)\Omega$$
$$= (a_1 - ia_2)\Omega$$
$$= S_{\mathcal{H}} (a_1\Omega + ia_2\Omega)$$

Subspaces do not necessary come from a von Neumann algebra.

Standard subspaces Poincaré covariant nets

A U-covariant net of standard subspaces \mathcal{H} on the set \mathcal{W} of wedge regions of the Minkowski spacetime is a map

 $H: \mathcal{W} \ni W \longmapsto H(W) \subset \mathcal{H}$

that associates a closed real linear subspace H(W) with each $W \in W$, satisfying:

- 1. *Isotony*: if $W_1 \subset W_2$ then $H(W_1) \subset H(W_2)$;
- 2. Locality: For every wedge $W \in W$ we have

 $H(W') \subset H(W)'$

- 3. Poincaré covariance and Positivity of the energy: $U(g)H(W) = H(gW), g \in \mathcal{P}^{\uparrow}_{+}$ and U has positive energy;
- 4. *Reeh-Schlieder property:* H(W) is cyclic $\forall W \in W$;

Nets satisfying 1.-4. will be denoted by (U, H)

5. Bisognano-Wichmann property:

$$\Delta^{it}_{H(W)} = Uig(\Lambda_W(-2\pi t)ig), \qquad orall \ W \in \mathcal{W}$$
 ;

Standard subspaces Poincaré covariant nets

(at least) two reasons to study nets of standard subspaces:

- 1. they contain the modular structure of von Neumann algebras net $A(O) \mapsto H(O) = \overline{\mathcal{A}(O)_{sa}\Omega}$
- 2. they define one particle nets *Scalar massive particle*

$$H(O) = \overline{\{f \in \mathcal{C}^{\infty}(\mathbb{R}^{1+3}) : \operatorname{supp} f \subset O\}}$$

Scalar product:

$$\langle f,g
angle = \int \overline{\hat{f}}(p)\hat{g}(p)\delta(p^2-m^2) heta(p_0)dp$$

Then second quantization gives the free field. Not Canonical!

Canonical one-particle net associated to a particle [BGL02] U (anti-)unitary positive energy representation of \mathcal{P}_+ \uparrow 1-1 One particle nets satisfying **B-W property**

An algebraic condition for the B-W property

- We expect that under some conditions on the Poincaré representation, the canonical (generalized) one-particle net is "unique".
- One way to face this problem is to consider analytic extensions of wave functions (cf. Mund 2001 + Buchholz, Epstein 1985). There are some difficulties in extending the result to infinite multiplicity and direct integrals and to the massless case.
- We will provide an algebraic condition called modularity condition on a unitary p.e.r. of P[↑]₊, sufficient to conclude B-W property on any standard subspace net the representation acts on.

2. A sufficient condition for the B-W property

An algebraic condition for the B-W property

Definition

A unitary, $\mathcal{P}^{\uparrow}_{+}$ -p.e.r. *U* is **modular** if for any *U*-covariant net of standard subspaces *H*, namely any couple (U, H) the B-W property holds.

Definition

►
$$G_3^0 \doteq \{g \in \mathcal{L}_+^\uparrow : gW_3 = W_3\}$$
 the subgroup of \mathcal{L}_+^\uparrow elements fixing W_3 .

•
$$G_3 = \langle G_3^0, \mathcal{T} \rangle$$
, where \mathcal{T} is the \mathbb{R}^{1+3} -translation group.

For a general wedge W ∈ W, G⁰_W and G_W are defined by the transitive action of P[↑]₊ on wedges.

Definition

A unitary, positive energy \mathcal{P}_+^{\uparrow} -representation U satisfies the **modularity** condition if $r \in \mathcal{P}_+^{\uparrow}$ s.t. rW = W'

$$U(r) \in U(G_W)''. \tag{MC}$$

A first remark

▶ It is sufficient to fix $W = W_3$ and $r = R_1(\pi)$, thus (MC) becomes

 $U(R_1(\pi)) \in U(G_3)''.$

▶ For (almost) every $p = (p_0, p_1, p_2, p_3)$ in the forward light cone $\overline{V}^+ = \{p \in \mathbb{R}^{1+3} : p \cdot p \ge 0\}$

$$R_{1}(\pi)p = (p_{0}, p_{1}, -p_{2}, -p_{3})$$

= $\Lambda_{3}(t_{\rho})(p_{0}, p_{1}, -p_{2}, p_{3})$
= $\Lambda_{3}(t_{\rho})R_{3}(\theta_{\rho})(p_{0}, p_{1}, p_{2}, p_{3})$ (1)

for a property $t_{\rho} \in \mathbb{R}$ and $\theta_{\rho} \in [0, 2\pi]$.

 G₃⁰ = ⟨Λ₃, R₃⟩ and in particular R₁(π) is an automorphism of a.e. orbits of G₃⁰ on V⁺.

Modularity condition

Proposition

Let (U, H) be a Poincaré covariant net of standard subspaces. The strongly continuous map

$$Z_{H(W_3)}: \mathbb{R} \ni t \mapsto \Delta^{it}_{H(W_3)} U(\Lambda_3(2\pi t)).$$

is a one-parameter group and $Z_{H(W_3)}(t) \in U(G_3)'$.

Theorem

Let U be a unitary p.e.r. of the Poincaré group $\mathcal{P}^{\uparrow}_{+}$. If the condition (MC)

 $U(R_1(\pi)) \in U(G_3)''$

holds on U, then any local U-covariant net of standard subspaces, satisfies the Bisognano-Wichmann property. In particular U is modular. Idea of the proof: $Z_{H(W_3)}$ commutes with $U(R_1(\pi))$, then $Z_{H(W_3)} \equiv 1$ and B-W property holds.

The modularity condition

The condition (MC) can be extended easily to more general representations.

Proposition

Let U and $\{U_x\}_{x \in X}$ be unitary p.e.r. of \mathcal{P}^{\uparrow}_+ satisfying (MC). Let \mathcal{K} be an Hilbert space, Let (X, μ) be a standard measure space. Then

• (MC) holds for
$$U \otimes 1_{\mathcal{K}} \in \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$$
.

• If
$$U_x|_{G_W}$$
 and $U_y|_{G_W}$ are disjoint for μ -a.e. $x \neq y$. Then
 $U = \int_X U_x d\mu(x)$ satisfies (MC).

Proposition

Assume that U satisfies (MC), then for every (U, H) the essential duality holds, namely $\mathcal{A}(W') = \mathcal{A}(W)'$.

The modularity condition - the scalar case

The scalar representations have the following form

$$(U_{m,0}(a,g)\phi)(p)=e^{iap}\phi(g^{-1}p), \qquad (a,g)\in \mathbb{R}^{1+3}
times \mathcal{L}_+^\uparrow=\mathcal{P}_+^\uparrow,$$

where

$$\phi \in \mathcal{H}_{m,0} \doteq L^2(\Omega_m, \delta(p^2 - m^2)\theta(p_0)d^4p),$$

and $\Omega_m = \{ p = (p_0, p) \in \mathbb{R}^{1+3} : p^2 = p_0^2 - p^2 = m^2, p_0 \ge 0 \}$, $m \ge 0$.

Proposition

Let U be a unitary, positive energy, irreducible scalar representation of the Poincaré group. Then U satisfies the modularity condition (MC) $U(R_1(\pi)) \in U(G_3)''$.

Proof uses that translation unitaries \mathcal{T} generate MASA and G_3^0 -orbits are $R_1(\pi)$ -invariant

Theorem

Let $U = \int_{[0,+\infty)} U_m d\mu(m)$ where $\{U_m\}$ are (finite or infinite) multiples of the scalar representation of mass m, then U satisfies (MC). In particular the B-W property hold for every (U, H).

3. Counterexamples and remarks

Counter-example

Counterexamples to modular covariance seem not so natural in Poincaré covariant framework (see for instance Yngvason 1994).

Counterexamples to B-W (with modular covariance). Let V be a K-real, bosonic, unitary representation of $\mathcal{L}^{\uparrow}_{+}$ on an Hilbert space $\mathcal{K} = K + iK$. Let U_0 be the scalar, unitary irreducible representation of $\mathcal{P}^{\uparrow}_{+}$.

 $W \mapsto H_0(W) \in \mathcal{H}$

the canonical BGL-net associated to U_0 . We can define the **new standard subspaces** net

$$ilde{H}: W \longmapsto K \otimes H_0(W) \subset ilde{\mathcal{H}} \doteq \mathcal{K} \otimes \mathcal{H}$$

There are **two representations** acting on \tilde{H} :

$$U_I: \widetilde{\mathcal{P}_+^\uparrow}
i (a, A) \longmapsto 1_\mathcal{K} \otimes U_0(a, A) \in \mathcal{U}(\tilde{\mathcal{H}})$$

$$U_V: \widetilde{\mathcal{P}_+^{\uparrow}}
i (a, A) \longmapsto V(A) \otimes U_0(a, A) \in \mathcal{U}(\tilde{\mathcal{H}})$$

Remarks

- Bisognano-Wichmann property holds for U_I (not for U_V).
- ► If U₀ is massive, U_V has infinitely many spins (possibly with finite multiplicity)
- ▶ if U₀ is massless, U_V is direct integral of infinite spin representations [LMR16]
- (MC) holds for scalar representations in \mathbb{R}^{1+s} , $s \geq 3$
- ► (MC) holds for irreducible finite helicity representations ⇒ No one-particle nets associated (polarizations have to be combined)
- (MC) has to be generalized to include (at least) finite sum of spinorial representations
- Can (MC) be used to prove B-W for more general nets of von Neumann algebras?