DECAY PROPERTIES OF THE VACUUM AND THERMAL TWO-POINT FUNCTIONS IN CURVED SPACETIMES FOR A MASSIVE INTERACTING SCALAR FIELD

Samuel Rutili

Department of Physics - University of Pavia

LQP36 Meeting - Universität Leipzig

1 / 19

Outline

- Motivations and settings;
- ► Flat case;
- Generalization to curved spacetimes:
 - 1. Globally hyperbolic spacetimes with compact Cauchy surfaces;
 - 2. Schwarzschild black hole;
 - 3. Stationary and asymptotically Minkowskian (SAM) spacetimes.

Motivations and setting

The applicability of AQFT to curved spacetimes allows the description of interesting phenomena, such as:

- ► Hawking radiation^{1,2}
- ► Unruh effect

Setting

- lacksquare Globally hyperbolic spacetime (M,g)
- Massive scalar field $\phi:M\to\mathbb{R}$, such that $P\phi=0$ with P the Klein-Gordon operator
- Algebra $\mathcal{A}(M)$ generated by smeared fields $\phi(f)$ $(f \in \mathcal{D}(M))$, encoding locality, causality, CCR
- lackbox Quasi-free Hadamard states over $\mathcal{A}\Rightarrow\omega$ defined by a two-point function of Hadamard form

3 / 19

Samuel Rutili (UniPv) May 31 2015

¹R. Haag, K. Fredenhagen - Commun. Math. Phys. 127, 273-284 (1990)

²G. Collini, V. Moretti, N. Pinamonti - Lett. Math. Phys. 104, 217-232 (2013)

Ground³ and KMS state

Ground state

The state ω is ground if the map $t\mapsto \omega(Alpha_t(B))$ is such that

$$\int_{-\infty}^{\infty} \widehat{f}(t)\omega(A\alpha_t(B))dt = 0$$

for each $A,B\in\mathcal{A}(M)$, $f\in C_0^\infty(\mathbb{R}^-)$, with $\{\alpha_t\}_{t\in\mathbb{R}}$ strongly continuous one-parameter *-isomorphism of \mathcal{A} .

KMS state

The state ω is KMS at inverse temperature β if:

- ▶ The functions $t\mapsto \omega(A\alpha_t(B))$ and $t\mapsto \omega(\alpha_t(B)A)$ have an analytic extension to the strip $0<Imz<\beta$ and $-\beta<Imz<0$ respectively;
- $\qquad \qquad \omega(A\alpha_t(B)) = \omega(\alpha_{t+i\beta}(B)A) \qquad \forall A, B \in \mathcal{A}(M)$

Samuel Rutili (UniPv) May 31 2015

4 / 19

³H. Sahlmann, R. Verch - Passivity and Microlocal Spectrum Condition (2000)

Interacting theory

Interaction

- ▶ Self-interaction $\mathcal{H}_I \in \mathcal{A}$ with coupling const. λ (e.g. $\lambda \phi^3$)
- ► S relative S-matrix

$$S(\lambda) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{M^n} d^4x_1 ... d^4x_n T \mathcal{H}_I(x_1) ... \mathcal{H}_I(x_n) \lambda(x_1) ... \lambda(x_n)$$

with T time-ordering operator

▶ Interacting algebra A_{λ} : generated by $S_{\lambda}(f) = S(\lambda)^{-1}S(\lambda + f)$

Interacting KMS state

We can define the interacting dynamics $lpha_I(t)$ in terms of lpha(t)

 \Rightarrow Interacting KMS state with respect to $\alpha_I(t)$

No asymptotically free fields \Rightarrow IR divergences

Samuel Rutili (UniPv) May 31 2015 5 / 19

Time-slice axiom

Time-slice axiom (TSA) in the free theory

- $lackbox{O}\subset M$ open s. t. $O\supset \Sigma$ Cauchy surface of M
- $ightharpoonup \mathcal{A}(M)$ and $\mathcal{A}(O)$ algebras of observables on M and O resp.

 $\mathcal{A}(M)$ is *-isomorphic to $\mathcal{A}(O)$ via the map $f\mapsto P\chi^+E(f)$, where:

- lacksquare $f\in\mathcal{D}(M)$ generators of \mathcal{A}
- χ^+ smooth function, $\chi^+=1$ in $J^+(O)\setminus O$, $\chi^+=0$ in $J^-(O)\setminus O$
- ▶ E causal propagator of P ($E=E^+-E^-$, E^\pm advanced/retarded fundamental solution of P)

TSA in the interacting theory

For generic coupling constant, TSA is valid also for interacting theories⁴

⁴B. Chilian, K. Fredenhagen - arXiv:0802.1642v3 (2008) → ⟨♂→ ⟨▼→ ⟨▼→ ⟨▼→ ▼▼ → ▼

Interacting state

 $\omega_{\beta}^{I,h}(A)$ $(A\in\mathcal{A})$ in terms of the connected correlation functions ω_{β}^{C} :

$$\omega_{\beta}^{I,h}(A) = \sum_{n=0}^{\infty} (-1)^n \int_{\beta S_n} du_1 ... du_n \int_{\Sigma^n} d^3 x_1 ... d^3 x_n h(x_1) ... h(x_n) \times \omega_{\beta}^C(A \otimes \mathcal{U}_h(u_1, x_1) \otimes ... \otimes \mathcal{U}_h(u_n, x_n))$$

where:

- h spatial cutoff
- $\beta S_n = \{ (u_1, ..., u_n) \in \mathbb{R} | 0 < u_1 < ... < u_n < \beta \}$
- $U_h(u,x) = \int dt \dot{\chi}^-(t) \alpha_{iu}([\mathcal{H}_I(x)]_{h\chi})$
- χ^- , χ s.t. $\chi = 1 \chi^+ \chi^-$

Heuristic adiabatic limit: h o 1 on the time-slice

Lindner-Fredenhagen work⁵

Connected correlation functions:

$$F_n^{vac}(u_1, x_1; ...; u_n, x_n) = \omega_{vac}^C(A_0 \otimes \alpha_{iu_1, x_1}(A_1) \otimes ... \otimes \alpha_{iu_n, x_n}(A_n)) =$$

$$= \sum_G \frac{1}{Sym(G)} F_{n, G}^{vac}(u_1, x_1; ...; u_n, x_n)$$

$$F_{n,G}^{vac}(u_1, z_1; ...; u_n, z_n) = \int dX dY \prod_{l} D_{+}^{vac}(x_l - y_l) \Psi(X, Y)$$

where:

$$D^{vac}_{+}(x-y) = \frac{1}{2\pi} \int \frac{d^3p}{2\omega_p} e^{-i(\omega_p x^0 - px)}$$

$$\Psi(X,Y) = \prod_{l \in E(G)} \frac{\delta^2}{\delta \phi_{s(l)}(x_l) \delta \phi_{r(l)} y_l} (A_0 \otimes \ldots \otimes \alpha_{iu_n,z_n} A_n)|_{\phi_0 \otimes \ldots \otimes \phi_n = 0}$$

$$X = (x_1, ..., x_n), Y = (y_1, ..., y_n)$$

⁵K. Fredenhagen, F. Lindner - arXiv:1306.6519v5 (2014) → ⟨♂ → ⟨ ≧ → ⟨ ≧ →) ≥ → ◇ < ♡

Lindner-Fredenhagen result

Ground (KMS) state

Let ω_{vac} (ω_{β}) be the ground (KMS with inverse temperature $0 < \beta < \infty$) state of the free Klein-Gordon field with mass m > 0. Then:

$$|F_n(u_1, x_1; ...; u_n, x_n)| \le ce^{-mr_e/\sqrt{n}}$$

for
$$r_e > 2R$$
, with $r_e = \sqrt{\sum_{i=1}^n u_i^2 + |x_i|^2} \ (r_e = \sqrt{\sum_{i=1}^n |x_i|^2})$ and $(u_1,...,u_n) \in \beta S_n^\infty = \{(u_1,...,u_n)|0 < u_1 < ... < u_n\}$ $((u_1,...,u_n) \in \beta S_n)$. In particular $F_{n,G}^{vac} \in L^1(\beta S_n \times \Sigma)$.

Adiabatic limit

The limit $\lim_{h\to 1} \omega_{vac}^{I,h}(A)$ ($\lim_{h\to 1} \omega_{\beta}^{I,h}(A)$), with $A\in \mathcal{A}_{\lambda}(\Sigma)$, exists and defines a ground (KMS) state on $\mathcal{A}_{\lambda}(O)$.

◆ロト ◆問 > ◆恵 > ◆恵 > ・恵 ・ 夕久○

Spacetimes with compact Cauchy surfaces

What we know

- ▶ KMS with respect to $\alpha_I(t)$
- ► Time-slice axiom
- $F_{n,G}^{vac} \in L^1(\beta S_n \times \Sigma)$

Adiabatic limit for the ground (KMS) state

Let ω_{vac} (ω_{β}) be a ground (KMS) state on the algebra $\mathcal{A}(O)$ with $(O, g|_O)$ time-slice of the spacetime (M, g). Then the adiabatic limit

$$\lim_{h \to 1} \omega_{vac(\beta)}^{I,h}(A) = \omega_{vac(\beta)}^{I}(A)$$

exists and defines a ground (KMS) state on $\mathcal{A}_{\lambda}(O)$, which induces a ground (KMS) state on $\mathcal{A}_{\lambda}(M)$ via pull-back (TSA).

Schwarzschild black hole

Schwarzschild metric

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

with M mass of the black hole.

Klein-Gordon equation

Massive scalar field $\phi: M \to \mathbb{R}$ with mass m:

$$(\partial_{\mu}g^{\mu\nu}\sqrt{-g}\partial_{\nu}+m^2\sqrt{-g})\Phi(x)=0$$

We are interested in the static region: r > 2M

Solutions to KG equation

$$\Phi(x) = \sum_{l,n} Y_l^n(\vartheta, \varphi) \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega t} \phi^l(r, \omega)$$

where $\phi^l(r,\omega)$ satisfies:

$$\left[\frac{\partial}{\partial r}r(r-2M)\frac{\partial}{\partial r}+l(l+1)+m^2r^2-\frac{\omega^2r^3}{r-2M}\right]\phi^l(r,\omega)=0$$

We can find two (lin. ind.) solutions $\phi^l(r,\omega)$ and $\psi^l(r,\omega)$, such that:

$$\phi^l(r,\omega) \overset{r \to \infty}{\sim} \frac{e^{i(qr + M/q(2\omega^2 - m^2)\log r)}}{qri^{l+1}} \qquad \psi^l(r,\omega) \overset{r \to 2M}{\sim} \left(\frac{\mid r - 2M \mid}{2M}\right)^{-2i\omega M}$$

with $q^2 = \omega^2 - m^2$

- ◀ □ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ · 볼 · 씨 및 ⓒ

Ground state two-point function

Boulware ground state⁶

A Green operator has to fulfill the equation

$$\left(-\frac{\partial}{\partial r}r(r-2M)\frac{\partial}{\partial r}+l(l+1)+m^2r^2-\frac{\omega^2r^3}{r-2M}\right)G(r,r',\omega)=\delta(r-r')$$

A solution can be written as:

$$G(r, r', \omega) = \frac{1}{W[\phi, \psi]} \times \begin{cases} \phi(r, \omega)\psi(r', \omega) & r' < r \\ \phi(r', \omega)\psi(r, \omega) & r < r' \end{cases}$$

where $W[\phi,\psi]$ is the Wronskian of ϕ and ψ .

 $G(r,r',\omega)$ defines a ground state

< ロ ト ← 卸 ト ← 差 ト → 差 → り へ ⊙

⁶D. G. Boulware - Physical Review (1974)

Connected correlation functions

The object we are interested in is the connected correlation function:

$$F_{n,G}^{vac}(u_1, z_1; ...; u_n, z_n) = \int dX dY \prod_{l} G^{vac}(x_l, y_l) \Psi(X, Y)$$

 $\Psi(X,Y)$ is rapidly decreasing (analogous to the flat case, microlocal methods), so $F_{n,G}^{vac}$ is well-defined.

Crucial point: asymptotyc behavior of $G^{vac}(x,y)$

Convergence

Two-point function

 $\blacktriangleright \ {\rm Region} \ \omega^2 < m^2$

$$\phi(r,\omega) \stackrel{r \to \infty}{\sim} \frac{a}{i^{l+2}} \frac{e^{-br}}{r} r^{-c}$$

with
$$a=(m^2-\omega^2)^{-\frac{1}{2}}$$
; $b=\sqrt{m^2-\omega^2}$; $c=M(m^2-\omega^2)^{-\frac{1}{2}}(2\omega^2-m^2)$

• Region $\omega > m$

$$\phi(r,\omega) \stackrel{r \to \infty}{\sim} \frac{e^{i(qr + a \log r)}}{i^{l+1}qr}$$

with
$$a = (2\omega^2 - m^2)M/q$$

(analogous for $\psi(r,\omega)$)

In both cases we have a well-behaved two-point function (and it is valid for an arbitrary ω), so $F_{n,G}^{vac} \in L^1(\beta S_n \times \Sigma)$.

4D > 4A > 4B > 4B > B 900

Main result

What we know

- ightharpoonup KMS with respect to $lpha_I(t)$
- ► Time-slice axiom
- $F_{n,G}^{vac} \in L^1(\beta S_n \times \Sigma)$

Existence of the adiabatic limit

Let ω be a quasi-free Hadamard ground state on the algebra $\mathcal{A}(O)$ with O time-slice in the Schwarzschid spacetime M. Then the adiabatic limit

$$\lim_{h \to 1} \omega_{vac}^{I,h}(A) = \omega_{vac}^{I}(A)$$

exists and defines a ground state on the interacting algebra $\mathcal{A}_{\lambda}(O)$, which induces a ground state on $\mathcal{A}_{\lambda}(M)$ via pull-back (TSA).

Thermal state

Integral kernel of the Green operator

$$G(x, x') = i \int_0^\infty d\omega e^{-i\omega(t-t')} \frac{e^{\beta\omega}}{e^{\beta\omega} - 1} G_{vac}(r, r', \omega)$$

- lacktriangle exists for the extension: t o t + i au, t' o t' + i au'
- satisfies the KMS condition

Adiabatic limit

Let ω_{β} be a quasi-free Hadamard KMS state on the algebra $\mathcal{A}(O)$ with O as before. The adiabatic limit

$$\lim_{h \to 1} \omega_{\beta}^{I,h}(A) = \omega_{\beta}^{I}(A)$$

exists and defines a KMS state on the interacting algebra $\mathcal{A}_{\lambda}(O)$, which induces a KMS state on $\mathcal{A}_{\lambda}(M)$ via pull-back (TSA).

Extension to SAM spacetimes?

SAM spacetime

- ightharpoonup Stationary ightarrow KMS condition
- Asymptotically Minkowskian

We basically used asymptotic considerations, so we expect our results to be true for asymptotically Minkowskian spacetimes

Conclusions

What has been done:

Existence of the adiabatic limit for an interacting massive scalar field in:

- Spacetimes with compact Cauchy surfaces (ground and KMS)
- Schwarzschild (ground and KMS)

What has to be done:

- Existence of the adiabatic limit for an interacting massive scalar field in stationary asymptotically Minkowskian spacetimes
- ► Extension to the massless interacting scalar field⁷
- Extension to spinor fields

⁷N. Drago, T. P. Hack, N. Pinamonti - arXiv:150202705 (2015) ← ≥ → ← ≥ → へへ

Samuel Rutili (UniPv) May 31 2015 19 / 19