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History

“[...] At this time an idea occurred to me which at first I considered to be mainly of
aesthetic value but which turned out to be so fertile that its elaborations and
applications determined the direction of my work for many years. [...] My
conclusion was that the theory must give us for each region of space-time an
algebra corresponding to the set of all observables or operations pertaining to the
region. This correspondence between space-time regions and algebras is the
content of the theory; nothing more nor less. Relativistic causality demands that the
algebras of two regions which lie space-like to each other should commute. In the
case of a field theory the algebra of a region is generated by the fields “smeared
out” by test functions with support in the region.” [R. Haag: “Some people and some problems met in half a

century...” Eur. Phys. J. H. 35 (2010)]



History

The idea to formulate quantum theory in an “algebraic manner” had been
proposed already by I. Segal in 1946 [Segal 1946]. NEW IDEAS:

▶ 1st idea: Segal did not associate different algebras to different Minkowski
regions, i.e. a map N 7→ A(N) . Special to the relativistic setting.

▶ 2nd idea: A(N) should be “abstract” algebras. In theory with charges

H = ⊕q Hq︸︷︷︸
charge q “superselection sector”

(0.1)

Then on each Hq the algebra acts in a different representation πq and
total representation of A is “diagonal”

π(A) =


. . .

πq(A)
πq+1(A)

. . .

 (0.2)

=⇒ redundant description.



History

In 1964 Haag and Kastler publish their influential paper which proposes these
two ideas. While the 1st idea is well-motivated, they seemed to have settled
on the 2nd idea due to their discovery of a mathematical result in the
literature (which Haag attributes to Kastler [see “Some people and some problems...”]). This
result [Fell 1960] states, in simple terms, that, given n local observables
O1, . . . ,On, one can approximate (for all i = 1, . . . , n)

tr( ρq︸︷︷︸
statistical operator in charge q Hilbert space

Oi )

to arbitrary accuracy ε by some statistical operator in charge-0 Hilbert space

tr( ρ
(ε)
0︸︷︷︸

statistical operator in charge 0 Hilbert space

Oi )

=⇒ finitely many local operations cannot distinguish “representation”.



History

In 1964, Wilson proposes his “operator product expansion”:

An alternative is proposed to specific Lagrangian models [...] operator products a
the same point have no meaning. [...] a generalization of equal time commutation
relations is assumed: Operator products at short distances have expansions at short
distances involving local field multiplying singular functions [...] [K. Wilson: “Non-Lagrangian models

of current algebra” PR 179 (1969)]

Rather than by conceptual thinking as Haag-Kastler, Wilson is influenced by
ideas about “current algebras” [Gell-Mann 1962, Lee, Weinberg & Zumino 1967] that are influential
around this time. Later, [Zimmermann 1972] shows that Wilsons proposals are
indeed consistent with renormalized perturbation theory.

Actually, the Haag-Kastler proposal is also consistent with renormalized
perturbation theory [Brunetti & Fredenhagen 1999]



Comparison

Despite obvious differences in motivation, technical setting, etc. there exist
several obvious parallels between the OPE proposed by Wilson and the ideas
of AQFT proposed by Haag-Kastler

▶ Both frameworks emphasize algebraic relations between observables
(elements of an abstract C∗-algebra here, local point like quantum field
there) are independent of the state and the representation. In
AQFT-framework, this is because the algebras are to be “abstractly
defined”. In the OPE, the coefficients do not depend on state.

▶ Both frameworks emphasize (and exploit) that there is a freedom of
choosing the “generators” of the algebraic structure. In OPE: field
redefinitions

▶ Neither framework in principle requires Lagrangian formulation
▶ Both frameworks emphasize that “equal time” algebraic relations are

unsuitable in QFT.
▶ Relationship between both approaches was clarified by [Bostelmann 2008]



Further developments

Haag-Kastler nets:
▶ Superselection structure, braid statistics, ... [Doplicher-Haag-Robers 60s-90s,

Fredenhagen-Rehren-Schroer 90s, Buchholz-Fredenhagen 1982, Buchholz-Roberts 2015]
▶ Relationship with sub factor theory [Longo 90s-]
▶ Classification of conformal QFTs in d = 2 [Kawahigashi, Longo, ... 00s-]
▶ Algebraic viewpoint extremely natural for quantum field theories

formulated on curved spacetimes [Kay-Wald 1990, Radzikowski 1998, Brunetti et al. 2003,...] .
▶ ... (this conference: Lechner, Longo, Reidei)

Operator product expansion:
▶ In 1970s, various groups [Polyakov 1974, Mack 1977, Gatto et al. 1973, Schroer et al. 1974] realize

that the OPE simplifies in CFTs and associativity constraints can be
turned into “conformal bootstrap” recently: numerics, see e.g. [Rychkov 2016].

▶ In 1980s, OPE to study conformal field theories in d = 2 [Belavin et al. 1984].
▶ Borcherds and others propose to formalize their ideas in the framework

of Vertex Operator Algebras [Borcherds 1988]



Technical challenges of QFT

Unfortunately, if they mathematically exist, QFTs must be rather complicated
presumably in any approach/framework.

“In those years a theoretical physicist of modest talent could harvest results of great
interest, today persons of great talent produce results of modest interest” [F. Hund]

BASIC REASONS
▶ One can show quite generally that O(x) at a sharp point x is a

meaningless object (probability distribution has infinite fluctuations).
One must think of O(x) as operator valued distribution.

▶ It is not possible to identify in H subspaces associated with a definite
localization in x-space: The set of vectors O(x)|0⟩ as O(x) ranges over
composite fields spans entire Hilbert space! [Reeh-Schlieder 1968]

▶ O(x)|0⟩ contains arbitrarily many particles when there is interaction ⇒
situation worse than in non-relativisitic N -body systems

The inherent technical complications implied by these properties have so far
strongly impeded progress in establishing the mathematical existence of
interesting QFTs in d = 4 dimensions.



Formulating QFT via operator product expansion

An intrinsically “generally covariant” formulation of QFT can be given via
algebraic methods, e.g. by formulating QFT via Operator Product Expansion
[Hollands-Wald 2012]. A quantum field theory consists of:

▶ A list of quantum fields {OA}, where A is a label (incl. tensor/spinor
indices)

▶ A state Ψ is an expectation value functional characterized by N -point
“functions” ⟨OA1(x1) . . .OAN

(xN )⟩Ψ. Such a functional should be
“positive” → probability interpretation!

▶ N -point functions should satisfy a “micro local spectrum condition”
▶ The OPE should hold for a wide class of states Ψ

⟨OA1(x1) · · · OAN
(xN )⟩Ψ =

∑
B

CB
A1...AN

(x1, . . . , xN )︸ ︷︷ ︸
OPE coefficients

⟨OB(xN )⟩Ψ

▶ The OPE coefficients are independent of Ψ.
▶ The OPE coefficients should be generally covariant functionals of the

metric gµν .
▶ The OPE should satisfy associativity law.



Example:Free field

For a free scalar field theory in d = 4 dimensions with action
∫
|∂ϕ|2, the

basic OPE relation is

ϕ(x1)ϕ(x2) =
λ

|x1 − x2|2
· 1

+ϕ2(x2) +
∑ (x1 − x2)

µ1 . . . (x1 − x2)
µN

N !
ϕ∂µ1...µNϕ(x2)︸ ︷︷ ︸

smooth part

(0.3)

The composite fields such as O = ϕ2 are defined by this equation. Other
composite fields O = ϕ4, ϕ3∇µϕ, . . . similarly occur in OPE of ϕ2, etc.
Everything is constrained by associativity.
So in this theory one has, e.g.

CC
AB =

λ

|x1 − x2|2

when OA = OB = ϕ,OC = 1, etc. In curved spacetime the distances
|x1 − x2| in the coefficients are replaced by geometric quantities related to
the theory of geodesics.



Example: Conformal field theory (CFT)

In conformal field theory (d = 4) on flat spacetime R4, it is natural to group
composite fields into “multiplets” transforming under the conformal group
O(4, 2). Each multiplet contains a “primary field” O, together with its
“descendants”, which are roughly given by ∂µ1 . . . ∂µNO.
E.g. ϕ2 is a primary field, ϕ∂µϕ a descendant. The OPE between two primary
fields OA,OB takes the form

OA(x1)OB(x2) =
∑

primary C

λCAB

|x1 − x2|∆A+∆B−∆C
P(x1 − x2, ∂)OC(x2)

where P = PC
AB is a (pseudo-) differential operator that is determined

completely by group theoretical considerations [Schroer & Swieca 1974]. Thus the
content of the theory is determined by (i) structure constants λCAB and (ii)
dimensions ∆A.
Associativity+OS positivity put very stringent conditions on these data →
conformal bootstrap [Mack 1977, Polyakov 1974, Dolan-Osborne 2000,..., present].



It is natural to ask:

1. How to compute OPE coefficients CC
AB... (even in principle) beyond free

field or CFTs?

2. In what sense does associativity hold in general?

3. What is the magnitude of the “remainder” in the OPE (=error term)?

4. Can one devise an axiomatic framework for QFT in terms of OPE?

In this talk, I will give some answers to these questions.



Outline
1 How to construct the OPE coefficients

2 OPE factorisation

3 OPE convergence



General idea

▶ For free field theories (e.g. free scalar field theory with action
SCFT =

∫
|∂ϕ|2) one can construct OPE directly by “Wick’s theorem.”

▶ CFTs in d = 2, one can use representation theoretic methods
(Virasoro-algebra,W -algebras, current algebras, ...)

▶ For CFTs in d > 2 dimensions, one can use conformal bootstrap
including its numerical versions [Polyakov, Mack, Gatto et al., ..., Rychkov et al., ...]

▶ Some progress has been made for lattice QFTs (numerical) [Monahan et al.

2013,2014]
▶ For perturbations of free field theories or CFTs (given intuitively by
SCFT + g

∫
O, where O is some “marginal” or “relevant” operator),

one can attempt to derive a differential equation for the OPE coefficients
CD
AB...C as a function of the coupling g.

▶ This type of equation was found (and proved) by [Holland & Holland 2014],
generalizing and correcting an earlier attempt by [Guida & Magnoli 1995].



Action principle

To write down the action principle, use graphical notation. I draw an OPE
coefficient

CB
A1...An

(x1, . . . , xn)

as

1 2 n

I draw a concatenation of OPE coefficients

CB
A1C(x1, xn)C

C
A2...An

(x2, . . . , xn)

as

1 n2 3

Attention: None of these diagrams is a “Feynman graph”!



Action principle

I also write

∫
dy

y,O 1 2 n

where
▶ O denotes the “deformation”
▶

∫
dy = integral over {|y − xn| < L}.

▶ L = length scale that is part of the definition of the theory.



Action principle

There is a kind of “action principle” for OPE coefficients if we “deform”
SCFT → SCFT + g

∫
O:

∂/∂g =

1 2 n

Figure: Functional equation, left side. The tree represents a coefficient
CB
A1...An

(x1, . . . , xn)

=
∫
dy

y,O 1 2 n

−
∑n

i=1

∫
dy

1 2 i ny,O

−
∫
dy

y,O n1 2

Figure: Functional equation, right side. The composite trees represent
concatenations of coefficients, e.g. the rightmost tree means∑

C CC
A1...An

(x1, . . . , xn)CB
OC(y, xn)



Action principle

Theorem (Hollands-JH)
To any order in g:

∂g CB
A1...AN

(x1, . . . , xN ) = −
∫
|y−xN |<L

d4y

[
CB
OA1...AN

(y, x1, . . . , xN )

−
N∑
i=1

∑
[C]≤[Ai]

CC
OAi

(y, xi) CB

A1...Âi C...AN
(x1, . . . , xN )

−
∑

[C]<[B]

CC
A1...AN

(x1, . . . , xN ) CB
OC(y, xN )

]
.

▶ Can compute OPE coefficients to any perturbation order by iteration.
▶ State independence obvious.
▶ L→ L′ equivalent to

OA → O′
A =

∑
ZB
A (g, τ) · OB (1.4)

and g → g′ = g(g, τ). ⇒ RG equations! (τ = logL/L′ = RG “time”).



Examples

▶ In ϕ4 theory (d = 4), i.e. O = −ϕ4, one can compute OPE coefficients
order by order. At each order, one d4y-integral ⇒ at order gr we have
r integrations ⇒ similar complexity as “Feynman diagram” method. But:
Renormalization “automatic”.

▶ For Gross-Neveu model (d = 2), i.e. O = −(ψ̄ψ)2, we have all order
bounds on OPE coefficients. Series in g seems to converge [Hollands & Holland, in

prep.] ⇒ OPE coefficients analytic functions of g!
▶ For marginal perturbations of CFTs, simplification of equation to ODE.
▶ For local gauge theories (e.g. YM-theory), there holds a similar action

principle, supplemented by an “evolution equation” for the
BRST-operator (as a function of g) [Fröb 2016]



Action principle in CFT

If I assume to be given a 1-parameter families of CFTs with an exactly
marginal operator O (i.e. ∆O = d in d dimensions) parameterized by g, then
action principle implies an equation of the form

d

dg
λ = fλO(∆, λ)

d

dg
∆ = f∆O (∆, λ)

(1.5)

where f∆O , f
λ
O are explicit (quadratic) functions that depend on 6j-symbols of

the group O(4, 2) in d = 4 (i.e. entirely group theoretic=kinematic). Here
λ = {λCAB(g)} and ∆ = {∆A(g)} are the CFT data which are now functions
of g. O is the (marginal) perturbation of the CFT, which enters the
functions. [Hollands, in prep.]
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The OPE factorises

Theorem (Holland-SH)

In ϕ4-theory, any arbitrary but fixed loop order:

CB
A1...AN

(x1, . . . , xN ) =
∑
C

CC
A1...AM

(x1, . . . , xM )CB
CAM+1...AN

(xM , . . . , xN )

holds on the domain ξ ≡
max

1≤i≤M
|xi−xM |

min
M<j≤N

|xj−xM | < 1. (Sum over C abs. convergent !)

For N = 3: ξ = |x1−x2|
|x2−x3| < 1

x1 x2

x3

for ξ ≪ 1

x1 x2

x3

for ξ ≈ 1

This shows associativity really holds!
▶ Bound on remainder
▶ Justification of “action principle”
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Quantitative bound

Theorem
Up to any perturbation order r ∈ N the bound∣∣∣Remainder in associativity

∣∣∣
≤

Krξ
D+1 max

N≤v<N
|xi − xn|[B]∏M

v=1 min
1≤w≤M,w ̸=v

|xv − xw|[Av ]+δ
∏N

i=M+1 min
M<j≤N,i ̸=j

|xi − xj |[Ai]+δ

holds for some δ > 0 and where

ξ :=
max1≤i≤M |xi − xM |
minM<j≤N |xj − xM |

and where Kr is a constant which does not depend on D. (Here [A] = dim. of op.
in free theory).
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Previous results

▶ Wilson proposed his expansion as an asymptotic expansion for short
distances

▶ In CFTs, Mack showed convergence (in d = 4) for finite distances [Mack

1977]; for a more formal argument see also [Pappadopoulo et al. 2012]
▶ There is a difference between space like separation and light like

separation
▶ For theories without conformal invariance, situation was unclear



Bound on OPE remainder I

Theorem (Holland-Kopper-SH)
At any perturbation order r and for any D ∈ N,

there exists a K > 0 such that

OPE-Remainder︷ ︸︸ ︷∣∣∣⟨(OA1(x1) · · · OAN (xN ) −
∑

dim[B]≤D

CB
A1...AN

(x1, . . . , xN )OB(xN )
)
φ̂(p1) · · · φ̂(pn)︸ ︷︷ ︸

Spectator fields

⟩∣∣∣

≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

▶ M =

{
m for m > 0

µ for m = 0
mass or renormalization scale

▶ |P | = supi |pi|: maximal momentum of spectators

▶ κ := inf(µ, ε), where ε = minI⊂{1,...,n} |
∑

I pi|
ε: distance of (p1, . . . , pn) to “exceptional” configurations
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Conclusions from bound on OPE remainder

“OPE remainder” ≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1
· sup

(
1,

|P |
sup(m,κ)

)(D+2)(r+5)

1. Massive fields (m > 0): Bound is finite for arbitrary p1, . . . , pn

2. Massless fields: Bound is finite only for non-exceptional p1, . . . , pn

3. Bound vanishes as D → ∞

⇒ OPE converges at any finite distances!

4. Convergence is slow if...

▶ |P | is large (“energy scale” of spectators)
▶ maximal distance of points xi from reference point xN is large
▶ ratio of max. and min. distances is large, e.g. for N = 3

x1 x2

x3

Slow convergence
x1 x2

x3

Fast convergence
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Bound on OPE remainder II

Consider now smeared spectator fields φ(fi) =
∫
fi(x)φ(x) d

4x.

Theorem (Holland-Kopper-SH)
At any perturbation order r and for any D ∈ N,

there exists a K > 0 such that

∣∣∣⟨(OA1(x1) · · · OAN (xN ) −
∑

dim[B]≤D

CB
A1...AN

(x1, . . . , xN )OB(xN )
)
φ(f1) · · ·φ(fn)

⟩∣∣∣

≤ Mn−1

√
D!

(
KM max

1≤i≤N
|xi − xN |

)D+1

min
1≤i<j≤N

|xi − xj |
∑

i dim[Ai]+1

(D+2)(r+5)∑
s1+...+sN=0

n∏
i=1

∥f̂i∥ si
2

Msi

M : mass for m > 0 or renormalization scale µ for massless fields
∥f̂∥s := supp∈R4 |(p2 +M2)sf̂(p)| (Schwartz norm)

1. Bound is finite for any fi ∈ S(R4) (Schwartz space)
OPE remainder is a tempered distribution

2. Let f̂i(p) = 0 for |p| > |P |:

Bound vanishes as D → ∞
⇒ OPE converges at any finite distances!
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Conclusions & Outlook

1. QFT in CST is best formulated in terms of algebraic relations + states

2. The OPE converges at finite distances in perturbation theory.

3. The OPE factorises (associativity) in perturbation theory.

4. The OPE satisfies an action principle which is also useful for calculations

Possible Generalisations

▶ Gauge theories [Fröb 2016]
▶ Curved manifolds

▶ Minkowski space
▶ Non-perturbative

constructions
▶ ...
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