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Time-dependent Born-Oppenheimer approximation
How to extract QFTs on curved backgrounds from quantum gravity?

Problems
Mathematical framework?
→ beyond ~ −→ 0+
→ Hamiltonian approach

Approximate dynamics?
→ systematics beyonds O(t)
→ no fibered Hamiltonians

Hε =
∫ ⊕

dξ H0(ξ) + f(−iε∇)⊗ 1

Main idea
Utilize/adapt space-adiabatic perturbation theory [Panati, Spohn,Teufel; 2003].

Basic ingredient
Suitable pseudo-differential calculus (→ Equivariant Duflo-Weyl quantization).
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Time-dependent Born-Oppenheimer approximation
Space-adiabatic perturbation theory

Wish list
(1) Coupled quantum dynamical system (H, (Ĥ,D(Ĥ)))
(2) Splitting of the dynamics (controlled by parameter ε)

H = Hslow⊗Hfast

(3) ε-dependent deformation (de)quantization

.̂ ε :
symbols︷︸︸︷
S∞ (ε, Γ︸︷︷︸

slow phase space

,B(Hfast)) ⊂ C∞(Γ,B(Hfast)) −→ L(H)

(4) Asymptotic expansion of Hamiltonian symbol (up to smoothing operators S−∞)

Hε ∼
∞∑
k=0

εkHk, Hk ∈ Sρ−k

Ĥ = Ĥε
ε

(5) Conditions on the (point-wise) spectrum σ∗(H0) = {σ(H0(γ))}γ∈Γ
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Time-dependent Born-Oppenheimer approximation
Space-adiabatic perturbation theory

Upshot
Construct effective dynamics in Hπ0 (ε-independent subspace).
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Operator-algebraic approaches to lattice-gauge theory
Hamiltonian formulation [Kogut, Susskind; 1975]

Operator-algebraic formulations
Mathematical framework
→ fixed finite lattices [Kijowski, Rudolph; 2002]
→ fixed infinite lattice [Grundling, Rudolph; 2013]
→ inductive limit over finite lattices [Arici, Stienstra, van Suijlekom; 2017]

Common aspect
→ Replace the classical edge phase space T ∗G by the C∗-algebra C(G) oG (G-version

of CCR).

Problem
C(G) oG is not unital. This complicates constructions.

Observation
Equivariant Duflo-Weyl quantization is related to C(G) oG as well. It requires a unital
extension to be well-defined.
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Unitary representations of Thompson’s groups
Reconstruction of CFTs from subfactors [Jones; 2014]

1+1 dimensional chiral CFTs
{A(I)}I⊂S1 (conformal net of type III factors)
A(I) ⊂ B(I), extensions give subfactors
→ Characterized by algebraic data (planar algebras).

Main idea [Jones; 2014]

Use planar-algebra data to reconstruct CFTs from subfactors.
→ Define a functor from binary planar forest to Hilbert spaces.

Y︸︷︷︸
basic forest

7−→ (H1 → H2)︸ ︷︷ ︸
“spin doubling”

→ Gives discrete CFT models (Thompson group symmetry).

Observation
These discrete CFT models fit into the same framework as those defined by equivariant
Duflo-Weyl quantization.

Functor ←→ Inductive limit over lattices/graphs
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The basic construction
The elementary phase space

Some ingredients
Γ will be modeled on T ∗G.
Pseudo-differential calculus for T ∗G?
→ Start from a strict deformation quantization [Rieffel; 1990], [Landsman; 1993].

T ∗G ∼= G× g, g = Lie(G), n = dim(G).
exp : g −→ G is onto and locally one-to-one (U → V ).
→ Use exp to relate the Haar measure on G and the Lebesgue measure on g:∫

V⊂G
dg f(g) =

∫
U⊂g

dX j(X)2 f(exp(X)), f ∈ C∞c (V )

j(H) =
∏
α∈R+

sin(α(H)/2)
α(H)/2

, H ∈ t (restriction to a maximal torus)
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The basic construction
Operators from convolution kernels

Fibre-wise Fourier transform
For Xh = exp−1(h), σ ∈ C∞PW,Uε(g)⊗̂C∞(G), Uε = ε−1U , define

F εσ(h, g) = σ̌1
ε(Xh, g) =

∫
g∗

dθ

(2πε)n e
i
ε
θ(Xh)σ(θ, g), ε ∈ (0, 1].

→ F εσ ∈ C∞(G)⊗̂C∞(G) gives the kernel of a Kohn-Nirenberg-type ΨDO.
Deform the construction to obtain a Duflo-Weyl-type ΨDO:
→ Locally: FW,εσ (h, g) = F εσ(h,

√
h−1g).

→ Globally: Use the wrapping map ΦDW [Dooley, Wildberger; 1993]

< ΦDW (σ̌1
ε)(g), f >G =< σ̌1

ε(exp(− 1
2 ( . ))g), j · exp∗ f >g, f ∈ C∞(G)

Duflo-Weyl formula for C∞(T ∗G) −→ L(L2(G))
Operators are obtained from the integrated left-regular representation:

(QDWε (σ)f) =< ΦDW (σ̌1
ε)(g), ι∗R∗gf >G, f ∈ C∞(G)
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The basic construction
Properties of the quantization

Theorem (generalization of [Landsman; 1993]))

QDWε : C∞PW,U (g)⊗̂C∞(G) −→ K(L2(G)) ∼= C(G) oG

is a non-degenerate strict deformation quantization on (0, 1] w.r.t. to the canonical
Poisson structure on T ∗G. Furthermore, the G-CCR are satisfied:

QDWε ({σf , σf ′}T∗G) = i
ε
[QDWε (σf ), QDWε (σf ′)] = 0,

QDWε ({σX , σf}T∗G) = i
ε
[QDWε (σX), QDWε (σf )] = RXf,

QDWε ({σX , σY }T∗G) = i
ε
[QDWε (σX), QDWε (σY )] = iεR[X,Y ],

for σf (θ, g) = f(g), f ∈ C∞(G), and σX(θ, g) = θ(X), X ∈ g (momentum map of the
Hamiltonian G-action).

Pseudo-differential calculus
The quantization QDWε allows for a pseudo-differential calculus on T ∗G.
→ Symbol spaces, asymptotic completeness, star product, etc.
→ Complications due to the compactness of G.
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A projective phase space for lattice-gauge theories

(M, g) ∼= R×Σ

Hamiltonian formulation:
· M ∼= R×Σ - Cauchy foliation

{t−∆t} × Σ

{t} × Σ

{t + ∆t} × Σ

(M, g) ∼= R×Σ

initial data formulation
temporal gauge

Σ
U

V ∼= U ×G
P

Hamiltonian gauge-field formulation:
· Σ - Cauchy surface
· G - structure group (compact)
· A,E - gauge field, conjugate electric field
· DAE = 0 - Gauß constraint

finite-dimensional
projections

e

Se
γ

Basic functionals:
· ge(A) - Holonomy
· PeX (A,E;Se) - Flux

Phase space:

Γ ⊂ Γ = lim←−γ Γγ
Γγ = T∗G|E(γ)|
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A projective phase space for lattice-gauge theories
Structure of the finite-dimensional phase spaces

The induced Poisson structure
Using a suitable regularization of the infinite-dimensional Poisson structure, the basic
functionals w.r.t. a given graph γ generate the G-CCR of T ∗G|E(γ)|:

{f(ge), f ′(ge′)}γ(A,E) = 0,

{P eX , f ′(ge′)}γ(A,E) = δe,e
′
(RXf ′)(ge′(A)),

{P eX , P e
′
Y }γ(A,E) = −δe,e′P e[X,Y ](A,E)

Operations on graphs
The basic functionals behave naturally w.r.t. operations on graphs:

e = e2 ◦ e1 : ge(A) = ge2 (A)ge1 (A), (composition)

e 7→ e−1 : ge−1 (A) = ge(A)−1, P e
−1
X (A,E) = −P eAdge(A)(X)(A,E), (inversion)

e 7→ ∅ : drop dependence. (removal)

Composition for fluxes
The behavior of fluxes w.r.t. composition is more complicated:

P eX(A,E) = cP e2
X (A,E) + (1− c)P e1

Ad
g
−1
e2

(A)
(X)(A,E)

is compatible with the right action of G, but only c = 0, 1 preserve the Poisson structure.

Projective phase space
{Γγ}γ becomes a directed set w.r.t. inclusion of oriented, T ∗G-labeled subgraphs.
→ The graph operations induce symplectic surjections:

pγγ′ : Γγ′ −→ Γγ .

→ The Duflo-Weyl quantization induces injective ∗-morphisms (equivariance):

QDWε (p∗γγ′) = αγ′γ : L(C∞(Γγ)) −→ L(C∞(Γγ′)).
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A projective phase space for lattice-gauge theories
Some inductive constructions

Action of the gauge group
The gauge group G has a natural action on the finite-dimensional phase spaces.
→ Gauge transformations act at the vertices of the graphs.
→ The action on L(C∞(Γγ)) is induced by the action on convolution kernels:

αγ({gv}v∈V (γ))(F )({(he, ge)}e∈E(γ)) = F ({(α
g−1
e(1)

(he), g−1
e(1)gege(0))}e∈E(γ)).

A non-commutative analog of Γ
Construct an inductive system of C∗-algebras {Aγ}γ , A = lim−→γ

Aγ .

First try: Aγ = (C(G) oG)⊗̂|E(γ)| ∼= K(L2(G|E(γ)|))
→ Does not work (non-unital).

Second try: Aγ = M((C(G) oG)⊗̂|E(γ)|) ∼= B(L2(G|E(γ)|))
→ Works and has nice extension properties:
(a) Unique extension of morphisms,
(b) Embedding of C(G|E(γ)|) and G|E(γ)|,
(c) Recovery of states on (C(G) oG)⊗̂|E(γ)| as strictly-continuous states (normal states)

of Aγ .

Some questions

Different choices of Aγ? Unital extensions of (C(G) oG)⊗̂|E(γ)|?
Control on the state space of the inductive-limit algebra?

→ The natural representation on L2(lim←−γ G
|E(γ)|) = lim−→γ

L2(G|E(γ)|) is the GNS
representation of the Ashtekar-Isham-Lewandowski state.
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Constructions in 1 + 1 dimensions and the infinite tensor product
Combining Jones’ construction with lattice-gauge theory

General considerations
Construct two compatible functors:

Φ :D −→ Hilb,
Ψ :D −→ C∗-Alg,

for a category D of binary planar forests:

ob(D) = {binary planar trees},
hom(D) = {binary planar forests} × {permutations of leaves}.

→ Φ,Ψ are fixed by specifying them on ob(D), the basic forest (Y, e), and the basic
transposition (||, τ).

→ Binary planar trees correspond to standard dyadic partitions of [0, 1] (dyadic
one-dimensional graphs).

→ GD – the group of fractions of D – is isomorphic to Thompson’s groups V . GD acts
naturally on D.
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Constructions in 1 + 1 dimensions and the infinite tensor product
Combining Jones’ construction with lattice-gauge theory

Lattice-gauge theory on a space-time cylinder
Because ob(D) corresponds to dyadic one-dimensional graphs, (Φ,Ψ) can be modeled on
the inductive system {αγ′γ : Aγ → Aγ′}γ,γ′ :

Choose any compact group G.

Φ(t) = L2(G)⊗̂n(t) = Ht, t ∈ ob(D), n(t) – number of leaves,
Φ(Y, e) = R, (Rψ1)(g, g′) = ψ1(gg′),
Φ(||, τ) = Uτ , (Uτψ2)(g, g′) = ψ2(g′, g).

Ψ(t) = B(L2(G))⊗n(t) = At, t ∈ ob(D),
Ψ(Y, e) = R̃, R̃(a1) = UL(a1 ⊗ 1)U∗L , (ULψ2)(g, g′) = ψ2(gg′, g′)
Ψ(||, τ) = AdUτ .
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Constructions in 1 + 1 dimensions and the infinite tensor product
Combining Jones’ construction with lattice-gauge theory

Construction of CFT data
A local C∗-algebra A(I) is given as inductive limit over dyadic partitions of I ⊂ [0, 1]:

A(I) = {[ t
a

] : t ∈ ob(D), a ∈
⊗

J∈Pt(I)
AJ ⊗1},

Pt(I) is the partition given by t subordinate to I. AJ is the algebra corresponding to the
leaf in J .

A = A([0, 1]) = lim−→t
At, H = lim−→t

Ht,
A = A′′, A(I) = A(I)′′.
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Constructions in 1 + 1 dimensions and the infinite tensor product
Combining Jones’ construction with lattice-gauge theory

Some properties of {A(I)}I⊂[0,1]

[A(I),A(J)] = {0} if I ∩ J = ∅,
g ∈ GD : ρg(A(I)) = A(gI),
g ∈ GD : ω∞ ◦ ρg = ω∞.

Observations
(1) ρ : GD −→ Aut(A) is not strongly continuous in the induced topology of Diff(S1).
(2) There is a natural equivalence

η : Ψtriv −→ Ψ,
Ψtriv(Y, e) = R̃triv, R̃triv(a1) = a1 ⊗ 1.

→ A is isomorphic to an infinite tensor product of A|.
→ But, the natural equivalence does not extend to an equivalence of nets.
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Construction of states and type classification of algebras
Tensor product states

Powers factors
The natural equivalence η : Ψtriv −→ Ψ suggests to look for tensor-product states on A:

For G = Z2, the family of states

ωt,λ = ω
⊗n(t)
λ , At = M2(C)⊗n(t),

ωλ( . ) = tr(Tλ . ), Tλ = 1
2(1 + λ)

(
1 + λ 1− λ
1− λ 1 + λ

)
, λ ∈ [0, 1],

is consistent.
→ Aλ is of type IIIλ, λ ∈ (0, 1) (Powers factors, heat kernel states (β = − lnλ)).
→ A0 is of type I∞ (Ashtekar-Isham-Lewandowski state).
→ A0 is of type II1 (tracial state).
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Construction of states and type classification of algebras
YM2 on a space-time cylinder

Observations
(1) Identify Powers’ states as heat-kernel states.
→ Allows for generalization to compact Lie groups.
(2) The state-consistency condition has an interpretation as renormalization group

equation
→ Asymptotic freedom for YM2.

Hamiltonian YM2 on R× S1
L

Consider the Kogut-Susskind Hamiltonian on complete dyadic trees of depth N :

HN = gN
2aN

2N−1∑
n=1

1⊗ ...⊗∆(n)
G ⊗ ...⊗ 1, aN = L

2N−1 . (lattice spacing)

→ No magnetic terms in one spatial dimension.
Consider the β-KMS states associated with HN :

ω
(N)
β = (ω(1)

β )⊗n, ω
(1)
β ( . ) = Zβ(a−1

1 g2
1)−1 tr(exp(−βH1) . ).
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Construction of states and type classification of algebras
YM2 on a space-time cylinder

State consistency
The requirement that the the β-KMS states are consistent

ω
(N)
β ◦ αNN−1 = ω

(N−1)
β ,

leads to:
gN−1 = 2g2

N ⇒
g2
N

aN
= g2

1
L

= g2
0︸︷︷︸

bare coupling

L.

→ The state on the field algebra Aβ has a Thompson-group symmetry (discrete CFT).

Observables
Implementing gauge-invariance, i.e. constructing AGβ , H

G
β , gives

HGβ = L2(G)AdG , H = − 1
2g

2
0L∆G,

as expected. The Hamiltonian and the “area law” can be read of from the “state sum”

Zβ(a−1
1 g2

1) =
∑
π∈Ĝ

dπ e
−β2 g

2
0Lλπ .
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Thank you for your attention!
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