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Time-dependent Born-Oppenheimer approximation

How to extract QFTs on curved backgrounds from quantum gravity?

Problems

@ Mathematical framework?

— beyond h — 0+
— Hamiltonian approach

@ Approximate dynamics?

— systematics beyonds O(t)
— no fibered Hamiltonians

®
H. :/ dé Ho(§) + f(—ieV) ® 1

Main idea
Utilize/adapt space-adiabatic perturbation theory [Panati, Spohn, Teufel; 2003].

Basic ingredient

Suitable pseudo-differential calculus (— Equivariant Duflo-Weyl quantization).
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Time-dependent Born-Oppenheimer approximation
Space-adiabatic perturbation theory

Wish list

(1) Coupled quantum dynamical system (7, (H, D(H)))

(2) Splitting of the dynamics (controlled by parameter ¢)
H = Hslow @ Hrast

(3) e-dependent deformation (de)quantization

symbols

=@ /o? S
L5 8% (6, T, B(Hpast)) C C°(T, B(Hsast)) — L(H)

slow phase space

(4) Asymptotic expansion of Hamiltonian symbol (up to smoothing operators S™°°)

H. ~ Y eHy, Hy € 87"
k=0
H=H

(5) Conditions on the (point-wise) spectrum o+ (Ho) = {o(Ho(7))}~yer

v
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Time-dependent Born-Oppenheimer approximation
Space-adiabatic perturbation theory
rﬁ,.;ol"unte space.

Heey

f"’m«' H= ooy
Ol
~ X W,
r
l Ael 0E
v
= W@y 2 Hy

olmest invasiant 3ulspace

Upshot

Construct effective dynamics in Hr, (e-independent subspace).
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Operator-algebraic approaches to lattice-gauge theory
Hamiltonian formulation [Kogut, Susskind; 1975]

Operator-algebraic formulations

@ Mathematical framework

— fixed finite lattices [Kijowski, Rudolph; 2002]

— fixed infinite lattice [Grundling, Rudolph; 2013]

— inductive limit over finite lattices [Arici, Stienstra, van Suijlekom; 2017]
@ Common aspect

— Replace the classical edge phase space T*G by the C*-algebra C(G) x G (G-version
of CCR).

Problem

C(G) x G is not unital. This complicates constructions.

Observation

Equivariant Duflo-Weyl quantization is related to C(G) x G as well. It requires a unital
extension to be well-defined.
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Unitary representations of Thompson’s groups
Reconstruction of CFTs from subfactors [Jones; 2014]

1+1 dimensional chiral CFTs

o {A(I)};cst (conformal net of type Il factors)

o A(I) C B(I), extensions give subfactors
— Characterized by algebraic data (planar algebras).

Main idea [Jones; 2014]
Use planar-algebra data to reconstruct CFTs from subfactors.

— Define a functor from binary planar forest to Hilbert spaces.

\Y’/ — (H1 —)Hz)

basic forest “spin doubling”

— Gives discrete CFT models (Thompson group symmetry).

Observation

These discrete CFT models fit into the same framework as those defined by equivariant
Duflo-Weyl quantization.

Functor «— Inductive limit over lattices/graphs

v
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The basic construction
The elementary phase space

Some ingredients

o T will be modeled on T*G.
o Pseudo-differential calculus for T*G?
— Start from a strict deformation quantization [Rieffel; 1990], [Landsman; 1993].
o T"G =G x g, g=Lie(G), n = dim(G).
@ exp: g — G is onto and locally one-to-one (U — V).

— Use exp to relate the Haar measure on G and the Lebesgue measure on g:
/ dg f(9) = / dX j(X)? f(exp(X)), f € CE(V)
vca UCg

i H)/2
Jj(H) = H %, H € t (restriction to a maximal torus)
a€ERy
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The basic construction
Operators from convolution kernels

Fibre-wise Fourier transform
e For X, =exp '(h), o € Coy 1. (8)®C™(G), U. = e 'U, define

. Ny do i
F5(h,g) = 52(Xn.9) =/ WWG(X“U(@»Q), e € (0,1].
o

— F2 € C™(G)RC>(G) gives the kernel of a Kohn-Nirenberg-type ¥ DO.
@ Deform the construction to obtain a Duflo-Weyl-type ¥ DO:
— Locally: FY¢(h,g) = FE(h,Vh—1g).
— Globally: Use the wrapping map ®P"W [Dooley, Wildberger; 1993]

< éDW(&;)(g)vf 2@ =< 5’§(exp(—%( 2))g),J - exp* f >q4, f € C®(G)

Duflo-Weyl formula for C*°(T*G) — L(L*(Q))

Operators are obtained from the integrated left-regular representation:

Q2 (o) f) =< ®"V(52)(9), " Ry f >a, f€CP(G)
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The basic construction
Properties of the quantization

Theorem (generalization of [Landsman; 1993]))

Q2" : OBy (9)RC™(G) — K(L*(G) = C(G) x G

is a non-degenerate strict deformation quantization on (0, 1] w.r.t. to the canonical
Poisson structure on T*G. Furthermore, the G-CCR are satisfied:

Q2" ({os,0p}r+c) = 1[QP"Y (04),QP" (04)] = 0,
QY ({ox, 05 r+a) = L[Q2" (0x),Q7" (04)] = Rx f,
oW 1@ (0x),Q2" (ov)] = ieRix,v1,

for o4(6,9) = f(g), f € C(G), and 0x(0,g9) = 0(X), X € g (momentum map of the
Hamiltonian G-action).

{ox,0v}1r*a)

Pseudo-differential calculus

The quantization QP allows for a pseudo-differential calculus on T*G.

— Symbol spaces, asymptotic completeness, star product, etc.

— Complications due to the compactness of G.

v
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A projective phase space for lattice-gauge theories

{t + At} x = w
> ‘

() x s initial data formulation ‘g
temporal gauge ' -

_—

{t — At} x X

finite-dimensional

projections §
Hamiltonian gauge-field formulation:

- 3 - Cauchy surface

- G - structure group (compact)

- A, E - gauge field, conjugate electric field
- D E = 0 - GauB constraint

Hamiltonian formulation:
- M = R X3 - Cauchy foliation

g Basic functionals:
Se - ge(A) - Holonomy
v - P$ (A, E; Se) - Flux

Phase space:

A. Stottmeister gauge theory Gattingen February 2, 2018 15 /27



A projective phase space for lattice-gauge theories
Structure of the finite-dimensional phase spaces

The induced Poisson structure

Using a suitable regularization of the infinite-dimensional Poisson structure, the basic
functionals w.r.t. a given graph ~ generate the G-CCR of T*G!FO!

{f(ge); fl(ge’)}’Y(A’ E) = 07
{P%, F'(9:)}+(A, E) = 6% (Rx f') (90 (A)),
{P%, P§' }.(A, E) = —68. o P& v|(A, E)

Operations on graphs

The basic functionals behave naturally w.r.t. operations on graphs:

e=e20¢€1: ge(A) = gey (A)ge, (A), (composition)
— — e 1 e q a

erse ' ig.1(A) =g.(A)7", Px (AE)= —PAdge(A)(X)(A,E), (inversion)

e — (0 : drop dependence. (removal)

Composition for fluxes

The behavior of fluxes w.r.t. composition is more complicated:
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A projective phase space for lattice-gauge theories
Some inductive constructions

Action of the gauge group

The gauge group G has a natural action on the finite-dimensional phase spaces.
— Gauge transformations act at the vertices of the graphs.

— The action on £(C*°(T';)) is induced by the action on convolution kernels:

oy ({gvtoev ) ) (F)({(Re; ge) eer(v) = F({(age—(ll) (he); 921)9eGe(0)) YecEM))-

A non-commutative analog of '

Construct an inductive system of C*-algebras {2}, A = li_%Y A .

o First try: 2, = (C(G) x G)®IFM =~ c(L2(GIFMY)
— Does not work (non-unital).
e Second try: A, = M((C(G) x G)21FMI) = B(L2(GIFMIY)
— Works and has nice extension properties:
(a) Unique extension of morphisms,
(b) Embedding of C(GIEMI) and GIEMI,

(c) Recovery of states on (C(G) x G)®|E(7)| as strictly-continuous states (normal states)
of 2.

v
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Constructions in 1 4+ 1 dimensions and the infinite tensor product
Combining Jones’ construction with lattice-gauge theory

General considerations

@ Construct two compatible functors:

®:D — Hilb,
U :D — C*-Alg,

for a category D of binary planar forests:

ob(D) = {binary planar trees},
hom(D) = {binary planar forests} x {permutations of leaves}.
— ®, U are fixed by specifying them on ob(D), the basic forest (Y, ¢), and the basic
transposition (||, 7).

— Binary planar trees correspond to standard dyadic partitions of [0, 1] (dyadic
one-dimensional graphs).

— Gp — the group of fractions of D — is isomorphic to Thompson's groups V. Gp acts
naturally on D.

v
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Constructions in 1 4+ 1 dimensions and the infinite tensor product
Combining Jones’ construction with lattice-gauge theory

Lattice-gauge theory on a space-time cylinder

Because ob(D) corresponds to dyadic one-dimensional graphs, (®, ¥) can be modeled on
the inductive system {o.,/y 1 Ay — A}y ot

@ Choose any compact group G.

B
~
o~
=
Il

L*(G)®™® =, t € ob(D),n(t) — number of leaves,
®(Y,e) = R, (Ry1)(g, ) ¢1(99/)7
o(|,7) = Ur, (Urp2)(g,9") = 92(g', 9)-

U(t) = B(LX(G)®"® = 9,, t € ob(D),

(Yv 8) = R) R(al) = (al ® 1)UL7 (UL'(/)?)(gv ) 1112(99 g )
Y(||,7) = Adu, .

A. Stottmeister
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Constructions in 1 4+ 1 dimensions and the infinite tensor product

Combining Jones’ construction with lattice-gauge theory

.‘_
[N ol

Construction of CFT data
A local C*-algebra 2((I) is given as inductive limit over dyadic partitions of I C [0, 1]:

A(T) = {[£] : t € ob(D ,a€®J . Ay 21},

Py(I) is the partition given by ¢ subordinate to I. 2 is the algebra corresponding to the
leaf in J.

o 2 = ([0, 1]) = ling A, H = limy My,
o A=, A(I) =A(I)".
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Constructions in 1 4+ 1 dimensions and the infinite tensor product
Combining Jones’ construction with lattice-gauge theory

Some properties of {A(I)}1c[0,1]
o [A(D), A()] = {0} f INJ =0,
° g€ Gp:pye(A(D)) = A(gl),

0 g€ GD : Weo O Pg = Woo-

Observations

(1) p: Gp — Aut(A) is not strongly continuous in the induced topology of Diff(S').
(2) There is a natural equivalence

n: Vv — U,
\I/triv(Yy e) = Rtriv, Rtriv(al) =a1 ® 1.

— A is isomorphic to an infinite tensor product of .

— But, the natural equivalence does not extend to an equivalence of nets.
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Construction of states and type classification of algebras
Tensor product states

Powers factors
The natural equivalence 7 : Wy, —> W suggests to look for tensor-product states on A:

o For G = Zs, the family of states

wia = w2 = M (€)™,

. . 1 1+X 1-—2A
LU)\(.)—‘EI‘(T)\.), TA——2(1+)\) (1_>\ 1+>\>,)\€[0,1],

is consistent.
— Ay is of type llly, A € (0,1) (Powers factors, heat kernel states (8 = —In \)).
— Ay is of type loo (Ashtekar-Isham-Lewandowski state).

— Ao is of type Il; (tracial state).
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Construction of states and type classification of algebras
YMaz on a space-time cylinder

Observations
(1) Identify Powers' states as heat-kernel states.
— Allows for generalization to compact Lie groups.

(2) The state-consistency condition has an interpretation as renormalization group
equation

— Asymptotic freedom for YMa.

Hamiltonian YMs on R x S}

Consider the Kogut-Susskind Hamiltonian on complete dyadic trees of depth N:
2N71

Hy = Zl@ ®AM ®..®1, an =

2aN . (lattice spacing)

oN-1
— No magnetic terms in one spatial dimension.
Consider the 3-KMS states associated with Hy:
N 1 n
Wé ) (W(ﬂ ))®

, Wi () = Zp(ar g3) " tr(exp(—BHL) . ).
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Construction of states and type classification of algebras
YMaz on a space-time cylinder

State consistency

The requirement that the the S-KMS states are consistent

wéN) o a% 1= wéN 1),
leads to:
2 912\7 g% 2
gN-1=29n > =— == g L
an L ~—

bare coupling

— The state on the field algebra Ag has a Thompson-group symmetry (discrete CFT).

Observables

Implementing gauge-invariance, i.e. constructing .Ag, ’Hg, gives

HE = L*(G)*¢, H=-1g}LAqg,

as expected. The Hamiltonian and the “area law" can be read of from the “state sum”

162 X
s(ay 91) E dr e 290 .

TeG

v
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Thank you for your attention! )|
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