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Continuous product measures
Projective measures—or effective field theory

Problem
Integration theory on a suitable space of (generalized) fields over a
Riemannian manifold M.

Projective measures

• Fields x ∶ m ∈ M ↦ x(m) ∈ R (just heuristics, technical
assumptions would be premature).

• Compatible projections (or regularizing cutoffs)

πP ∶ X → XP , P ∈ P.

Otherwise said, X ⊆ proj lim XP .

• Compatible effective measures µP on XP .



Continuous product measures
Physical space coordinates

Choice of projections πP ∶ X → XP

Given by coarse graining procedure:

• Let Λ ⊆ L∞(M) be a lattice of projections.

• Consider partitions P = {p1, . . . ,pn } ⊆ Λ (i.e. ∑pi = 1 and
pipj = 0 if i ≠ j). Family P of such partitions is directed:
Q ≽ P iff P is contained in the lattice generated by Q.

• Let XP = L∞(X ; P) ≅ RP be the space of P-simple functions.
Note that Q ≽ P ⇔ L∞(X ; P) ⊆ L∞(X ; Q). Define

(πQPx)p =
1

∣p∣ ∑q≤p
∣q∣xq

where ∣p∣ = ∫M p(m)dm and q ≤ p ⇔ qp = q.



Continuous product measures
Physical space coordinates

Choice of Λ ⊆ L∞(M)
Less is more: the whole projection lattice of L∞(M) encodes just
the measure-theoretic structure of M. In cases where the
background is fixed, it is natural to take a Λ encoding also the
geometry.

• Natural choice: p ∈ Λ associated to bounded region in M with
piecewise smooth boundary.

• Partitions P ∈ P become smooth cellular structures on M.



Continuous product measures
Lévy white noise fields

Theorem
Let { νλ }λ≥0 be a convolution semigroup of probability measures
on R. The product measures

dµP(x) =∏
p∈P

dν∣p∣(∣p∣xp), x ∈ XP

are compatible (i.e. (πQP)∗µQ = µP). The corresponding
projective measure on X = proj lim XP is a Lévy white noise field.

Remark
In the Gaussian case dνλ(x) = 1√

2πλ
e−x

2/2λdx one formally has

dµ(x) = Ce−
1
2 ∫ x(m)2dmdx = R Cme

−L(x(m))dmdx(m).

In general, divergent running parameters will appear in L.



Continuous product measures
Projective observables

Definitions

• An effective observable is a function aP ∈ L1(XP).

• A projective observable is a collection a = { aP } of effective
observables satisfying the martingale condition

E[aQ ∣πQP] = aP .

• Space of projective observables: L1
eff(X ) = proj lim L1(XP)

with connecting maps E[⋅ ∣πQP] ∶ L1(XQ)→ L1(XP). Note:
a ∈ L1

eff(X ) is not necessarily integrable.

Remark
The family { aPµP } is a projective measure if a ∈ L1

eff(X ).



The algebra of local observables
Field evaluation and ultrafilters of Λ ⊆ L∞(M)

Abusing notation, write xp for the effective evaluation observable
x ∈ XP ↦ xp ∈ R, where P ∋ p is understood from context.

Proposition

Given P ≼ Q and q ∈ Q, one has

E[xq ∣πQP] = xp

where p ∈ P is uniquely determined by p ≥ q.

Corollary

Each effective evaluation observable xp admits an ultraviolet
completion (i.e. belongs to a projective observable) consisting only
of effective evaluation observables.



The algebra of local observables
Field evaluation and ultrafilters of Λ ⊆ L∞(M)

Definitions

• A filter is a family f ⊆ Λ which is:
• Non-trivial: neither f = ∅ nor f = Λ.
• Downward directed: p,q ∈ f⇒ pq ∈ f.
• Upward saturated: p ∈ f and q ≥ p ⇒ q ∈ f.

• An ultrafilter is a filter m which is maximal. Equivalently, for
each p ∈ Λ either p ∈ m or ¬p = 1 − p ∈ m. Write M for the
space of ultrafilters of Λ.

Proposition

Let m ∈M and P ∈ P. There is a unique element in m ∩P, which
will be written p(m).



The algebra of local observables
Wick product of field evaluations

Given m ∈M, write x(m) for the projective observable { xp(m) }.

Definition
Let m1, . . . ,mn ∈M. We define the Wick product
x(m1) ◇⋯ ◇ x(mn) ∈ L1

eff(X ) by

(x(m1) ◇⋯ ◇ x(mn))P = E[xq1⋯xqn ∣πQP]

where Q ≽ P is fine enough to admit the existence of pairwise
different qi ’s with qi ≤ p(mi). By independence, one can convince
oneself that the actual choice of Q and the qi ’s is irrelevant.

Remark
This can also be thought of as a collection of compatible effective
products xp1 ◇⋯ ◇ xpn ∈ L1(XP).



The algebra of local observables
Wick product of field evaluations

Examples

• Let µ be Gaussian white noise, i.e. dνλ(x) = 1√
2πλ

e−x
2/2λdx .

Then, x◇np = Hn
∣p∣(xp) where Hn

λ is the n-th Hermite polynomial

with variance 1/λ.

• Let µ be Poisson white noise, i.e. ν̂λ(ξ) = eλ(e
−iξ−1). Then,

x◇np is the falling factorial

xp(xp − ∣p∣−1)⋯(xp − (n − 1)∣p∣−1).

• Let µ be Γ white noise, i.e. ν̂λ(ξ) = (1 − iξ)−λ. Then,

x◇np = ∣p∣n
∣p∣(∣p∣ + 1)⋯(∣p∣ + n − 1)xn

p .

Note: multiplicative renormalization!



The algebra of local observables
Stochastic integral operators

One can take fixed linear combinations of Wick monomials. But
one can also vary the linear combination with the scale! Stochastic
integration arises as particular case:

Proposition

Consider a family αn = { αn
P }

P∈P of tensors αn
P = (αn

p1...pn) ∈ R
Pn

satisfying the compatibility condition

αn
p1...pn = ∑

qi≤pi
αn
q1...qn .

Then, the effective observables aP = ∑p1,...,pn∈P α
n
p1...pnxp1 ◇⋯ ◇ xpn

define a projective observable a ∈ L1
eff(X ). Notation:

a = ∫
Mn

x}ndαn = ∫
Mn

x(m1) ◇⋯ ◇ x(mn)dαn(m1, . . . ,mn).



The algebra of local observables
Wick calculus and the S-transform

A whole Wick calculus can be developed using the S-transform.

Definition
The S-transform of a ∈ L1

eff(X ) is

Sa(ξ) = µ̂(ξ)−1E [e−iξxa] , ξ ∈ inj lim X ∗
P .

Proposition

If a,b ∈ L1
eff(X ) are Wick polynomials, then S(a ◇ b) = S(a)S(b).

Definition
Whenever it makes sense, we define

f ◇(a) = S−1f (Sa), f ∶ R→ R.



Applications in physical modeling
The free field

Let µ be Gaussian white noise.

Problem
Find coefficients αp1p2 such that exp◇(−T )µ, T = ∫M2 x}2dα, is

the Gaussian measure Ce−
1
2 ∫ (∣∇x ∣2+x2)dmdx .

Solution
Easily done by equating the characteristic functions. One gets

αp1p2 = ⟨p1, ((−∆ + 1)−1 − 1)p2⟩ .



Applications in physical modeling
Continuum limits of Ising models

What if µ is Poisson or Γ white noise? Consider the (possibly
signed) measure exp◇(−T )µ where T is as above.

Proposition

exp◇(−T )µ is a positive measure.

Remarks

• The model is Euclidean invariant by construction.

• Spatial dimension plays no role.



Applications in physical modeling
Polynomial interactions

Let µ be Gaussian white noise again. Now consider the measure

exp◇(−T −V )µ, V = ∫
M

x(m)◇4dα(m)

where αp = ∣p∣ and T is as above.

Proposition

The corresponding characteristic function is, formally,

E [e−iξx exp◇(−T −V )] = e− ∫ ξ(m)
4dme−

1
2
⟨ξ,(−∆+1)−1ξ⟩.

Thus, exp◇(−T −V )µ is not positive (Schoenberg), but it is
reflection positive.



Applications in physical modeling
Finite difference models

Finally, let µ be any Lévy noise. Identifying projections p ∈ L∞(M)
with their essential supports, define

T = ∫
M2

x}2dα, αp1p1 =
⎧⎪⎪⎨⎪⎪⎩

− vold−1(p1 ∩ p2) p1 ≠ p2

vold−1(∂p1) p1 = p2

• The matrix (αp1p2)p1,p2∈P is, up to a multiplicative constant,
the finite difference Laplacian. T can be understood as a
renormalized (up to first order) kinetic energy.

• The effective measure E[e−TQ ∣πQP]µP diverges as Q gets
finer. Higher-order renormalization is needed.

• The “fully renormalized” version exp◇(−T )µ is not positive,
but again it is (formally) reflection positive.
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