QFT in 1 + 1 de Sitter spacetime and its Minkowski scaling limits

Rainer Verch

Inst. f. Theoretische Physik Universität Leipzig

w/ Christian Jäkel (Sao Paulo) and Jens Mund (Juiz de Fora)

York, 03 July 2019

🛞 2000 II

• De Sitter space

$$dS_r \doteq \left\{ x \in \mathbb{R}^{1+2} \mid x \cdot x = x_0^2 - x_1^2 - x_2^2 = -r \right\}, \quad dS = dS_1,$$

• Wedges: set $W_1 \doteq \{x \in dS \mid x_2 > |x_0|\},$

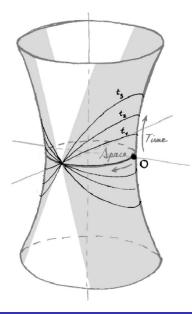
$$W = \Lambda W_1 \subset dS, \qquad \Lambda \in SO_0(1,2).$$

The set of all wedges is denoted by \mathcal{W} .

Boosts

$$\Lambda_{w}(t) = \Lambda \Lambda_{1}(t) \Lambda^{-1}, \quad \Lambda_{1}(t) \doteq \begin{pmatrix} \cosh t & 0 & \sinh t \\ 0 & 1 & 0 \\ \sinh t & 0 & \cosh t \end{pmatrix}.$$

I. QFT in dS_{1+1} (2) – de Sitter wedge W_1 and opposite wedge



🛞 men 🚺

I. QFT in dS_{1+1} (3) – Isometries of dS

• $\Lambda_{W}(t)W = W$, $t \in \mathbb{R}$, and, for all $t \in \mathbb{R}$,

$$\Lambda_{{}^{{}^{\prime}{}^{{}^{\prime}{}^{{}^{\prime}{}^{{}^{\prime}}}}}(t)=egin{cases} {} {}^{{}^{\prime}{}^{{}^{{}^{\prime}}{}^{{}^{{}^{\prime}}}}(t)\Lambda'^{-1}} & ext{if } \Lambda'\in SO_0(1,2) \ {}^{{}^{{}^{{}^{+}}}{}^{{}^{{}^{-}}}}(1,2) \, . \end{array}$$

Rotations

$$\alpha \mapsto \mathcal{R}_0(\alpha) \doteq \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}, \quad \alpha \in [0, 2\pi).$$

Horospheric Translations

$$egin{aligned} q \mapsto \mathcal{D}(q) \doteq egin{pmatrix} 1 + rac{q^2}{2} & q & rac{q^2}{2} \ q & 1 & q \ -rac{q^2}{2} & -q & 1 - rac{q^2}{2} \end{pmatrix}, \quad q \in \mathbb{R}\,. \end{aligned}$$

S men ITI

- rotations and boosts generate SO₀(1,2)
- almost every element g ∈ SO₀(1,2) can be written uniquely in the form

$$g = \Lambda_2(s) P^k \Lambda_1(t) D(q)$$
 with $k = 0$ or $k = 1$,
 $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

(Exceptions: $g = R_0(\pm \frac{\pi}{2})\Lambda_1(t')D(q')$) [Hannabus (1971)] • for |q| small:

$$D(q)\begin{pmatrix}0\\0\\r\end{pmatrix}-R_0(-q)\begin{pmatrix}0\\0\\r\end{pmatrix}=O(q^2)$$

An algebraic QFT on dS_r is given by:

[Bros, Epstein, Moschella (1998); Borchers, Buchholz (1999)]

- a Hilbert space *H_r* carrying a continuous unitary representation *U_r(g)*, *g* ∈ *SO*₀(1,2)
- a unit vector $\Omega_r \in \mathcal{A}_r$ which is invariant:

$$U_r(g)\Omega_r=\Omega_r \quad (g\in SO_0(1,2))$$

• a family of von Neumann algebras $A_r(W)$, $W \in W = W_r$, acted on covariantly by the group:

$$lpha_g^{(r)}(\mathcal{A}_r(W)) = \mathcal{A}_r(g(W)) , \qquad lpha_g^{(r)}(A) = U_r(g)AU_r(g)^*$$

- Ω_r is a standard unit vector for any $\mathcal{A}_r(W)$ and $(\Omega_r, . \Omega_r)_r$ restricts on $\mathcal{A}_r(W)$ to a KMS state for the boosts $t \mapsto \Lambda_W(t/r)$ at inverse temperature $\beta_r = 2\pi r$.
- J_{W_r}A_r(W_r)J_{W_r} = A_r(W'_r) where W'_r is the opposite wedge = causal complement of W_r. (J_{W_r} = modular conjugation)
- Defining for any double cone $O \subset dS_r$,

$$\mathcal{A}_r(\mathcal{O}) = \bigcap_{\mathcal{W} \supset \mathcal{O}} \mathcal{A}_r(\mathcal{W}),$$

the family of the $A_r(O)$ fulfills isotony, locality and covariance w.r.t. the action of $SO_0(1,2)$.

Quantum field models on dS_r fulfilling the assumptions of $(\mathcal{H}_r, \mathcal{A}_r, U_r, \Omega_r)$:

- the CCR quantized scalar field with field eqn (□ + ξR + m₀²)φ = 0 with dS_r "vacuum state" ω_r [Bros, Moschella (1996)]
- interacting fields: P(φ)₂ [Barata, Jäkel, Mund, (to appear in Memoirs of AMS); Jäkel, Mund (2018)]; earlier work e.g. [Figari, Hoegh-Kron, Nappi (1975)]

Construction of interacting QFT on dS_{1+1} has several attractive features:

- (+) QFT can be constructed (from "Cauchy data fields") in the "vacuum" GNS Hilbert space representation of the free field; interacting QFT field algebras act in that Hilbert space
- (+) unitary representation of rotations on "Cauchy data fields" is the same for interacting fields as for free fields

- (+) therefore, at an abstract level, the construction of an interacting QFT such as $\mathcal{P}(\phi)_2$ on dS_{1+1} amounts to identifying all unit vectors $\tilde{\Omega}$ in the "vacuum" GNS Hilbert space of the free field so that
 - $(\star)~\tilde{\Omega}~$ is invariant under rotations
 - (*) $\tilde{\Omega}$ is a standard vector for the Cauchy data wedge algebras
 - (*) the associated modular objects act geometrically correctly as in the conditions on $(\mathcal{H}_r, \mathcal{A}_r, U_r, \Omega_r)$

• For each dS_r , $r \ge 1$, a QFT is given:

 $(\mathcal{H}_r, \mathcal{A}_r, U_r, \Omega_r)$

where $A_r \subset B(\mathcal{H}_r)$ is the von Neumann algebra generated by all the $A_r(W)$, $W \in \mathcal{W}_r$.

- We assume the QFT at each *r* to be "the same" in a suitable sense
- We define a **scaling algebra** in the spirit of [Buchholz, RV (1995)] which provides a framework for investigating the limiting behaviour of the QFTs as $r \rightarrow \infty$.

Expect: In the limit $r \to \infty$, the theories should approximate a QFT on 1 + 1 dimensional Minkowski spacetime.

• **A** is the unital C^* of all families $\underline{A} = (\underline{A}_r)_{1 \le r < \infty}$ where

$$\underline{A}_r \in \mathcal{A}_r$$
 and $||\underline{A}|| = \sup_r ||\underline{A}_r||_r < \infty$

The algebraic operations are pointwise defined, i.e. for any *r*. • There is an action of *SO*₀(1,2) on *A*:

$$\underline{\alpha}_{g}(\underline{A})_{r} = \alpha_{g}^{(r)}(\underline{A}_{r})$$

• Let G be the group of all (continuous) functions

$$\boldsymbol{g}:[1,\infty)\to \textit{SO}_0(1,2)$$

Then also **G** acts on **A** by automorphisms:

$$\underline{\alpha}_{\boldsymbol{g}}(\underline{A})_{r} = \alpha_{\boldsymbol{g}(r)}^{(r)}(\underline{A}_{r})$$

Let N be a neighbourhood of the unit element 1 in $SO_0(1,2)$.

Notation :
$$\boldsymbol{g} \in N$$
 if $\boldsymbol{g}(r) \in N$ for all r

• Define \underline{A} as the C^* subalgebra of **A** formed by all \underline{A} such that

$$\sup_{\boldsymbol{g}\in \boldsymbol{N}} ||\underline{\alpha}_{\boldsymbol{g}}(\underline{A}) - \underline{A}|| \to 0 \quad (\boldsymbol{N} \to \{1\})$$

This is a large subalgebra of **A**: For any $\underline{A} \in \mathbf{A}$ and $f \in L^1(SO_0(1,2), d\mathbb{H})$ ($d\mathbb{H}$ = Haar measure), \underline{A}_f defined by

$$(\underline{A}_f)_r = \int f(g) \, \alpha_g^{(r)}(\underline{A}_r) \, d\mathbf{H}(g)$$

has the required continuity property.

Note: If $\underline{A} \in \underline{A}$ and $f \in L^1(SO_0(1,2), d\mathbb{H})$ then $\underline{A}_f \in \underline{A}$.

S men IT

Family of **lifted states** $(\underline{\omega}^{(r)})_{r\geq 1}$ on $\underline{\mathcal{A}}$:

$$\underline{\omega}^{(r)}(\underline{A}) = \omega_r(\underline{A}_r), \quad \omega_r(A) = (\Omega_r, A\Omega_r)_r$$

It holds that

$$\underline{\omega}^{(r)} \circ \underline{\alpha}_{\boldsymbol{g}} = \underline{\omega}^{(r)}$$

The family $(\underline{\omega}^{(r)})_{r\geq 1}$ possesses weak-* limit points as $r \to \infty$: There are scaling limit states $\underline{\omega}^{(\infty)}$ on the *C** algebra \underline{A} arising as

$$\underline{\omega}^{(\infty)}(\underline{A}) = \lim_{\kappa} \underline{\omega}^{(r_{\kappa})}(\underline{A})$$

for some generalized sequence $(\lambda_{\kappa})_{\kappa \in K}$ (*K* is an ordered set) with $\lim_{\kappa} r_{\kappa} = \infty$.

- There may occur different scaling limit states depending on the generalized sequence (r_κ)_{κ∈K}; e.g. the GNS representations of different scaling limit states might be disjoint (not unitarily equivalent or quasiequivalent).
- Obviously (from the properties of the lifted states) for any scaling limit state :

$$\underline{\omega}^{(\infty)} \circ \underline{\alpha}_{\boldsymbol{g}} = \underline{\omega}^{(\infty)}$$

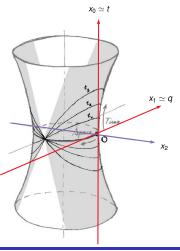
- In the GNS representation (*H*^(∞), π^(∞), Ω^(∞)) of any scaling limit state <u>ω</u>^(∞):
 - $U_{\boldsymbol{g}}^{(\infty)}(\pi^{(\infty)}(\underline{A}))\Omega^{(\infty)} = \pi^{(\infty)}(\underline{\alpha}_{\boldsymbol{g}}(\underline{A}))\Omega^{(\infty)}$ is a unitary group representation which is continuous: For any $\psi \in \mathcal{H}^{(\infty)}$,

$$\sup_{\boldsymbol{g}\in\boldsymbol{N}} ||\boldsymbol{U}_{\boldsymbol{g}}^{(\infty)}\psi - \psi||_{\mathcal{H}^{(\infty)}} \to 0 \quad (\boldsymbol{N} \to \{1\})$$

S III MARK

III. Scaling limit (6) – Scaling algebra (vi)

All dS_r are shifted by -r along the x_2 axis so that the $x_2 = 0$ hyperplane is the common tangent plane of all the $dS^{(r)} = dS_r - r\vec{e}_2 = T_r(dS_r)$



() 252° (II

•
$$\mathbb{T}_r \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_0 \\ x_1 \\ x_2 - r \end{pmatrix}$$

2-dim Minkowski spacetime is identified with the x₂ = 0 hyperplane in ℝ₁₊₂, in the limit as r → ∞, the right wedge W₁^(r) of dS^(r) approximates the x₂ = 0 hyperplane

• identify
$$SO_0(1,2) \xrightarrow{\operatorname{Ad} T_r} \operatorname{Iso}_0(dS^{(r)})$$

• set up the scaling algebra \underline{A} as before, however

(*) $(\mathcal{H}_r, \mathcal{A}_r, U_r, \Omega_r)$ is QFT on $dS^{(r)}$

(*) U_r is unitary representation of $Iso_0(dS^{(r)})$

Conformal embedding of \mathbb{R}_{1+1} into $W_1^{(r)}$

$$\chi_r \begin{pmatrix} t \\ q \\ 0 \end{pmatrix} = \begin{pmatrix} r \frac{\sinh(t/r)}{\cosh(q/r)} \\ r \tanh(q/r) \\ r \frac{\cosh(t/r)}{\cosh(q/r)} - r \end{pmatrix}$$

Embedding of $\mathcal{P}^{\uparrow}_{+}(2)$ into $\mathrm{Iso}_{0}(dS^{(r)})$

$$\boldsymbol{g}_{L}(r) = \mathrm{T}_{r} \Lambda_{2}(s) \Lambda_{1}(t/r) D(q/r) \mathrm{T}_{r}^{-1}$$

for

$$L\left(egin{array}{c}t'\\q'\\0\end{array}
ight)=\Lambda_2(s)\left(egin{array}{c}t'+t\\q'+q\\0\end{array}
ight)$$

Rainer Verch

S men IT

" \mathbb{R}_{1+1} conformally local" scaling algebras:

 $\underline{\mathcal{A}}(O)$ is defined as the C^* subalgebra of all $\underline{A} \in \underline{\mathcal{A}}$ with

 $\underline{A}_r \in \mathcal{A}_r(\chi_r(O))$

for any double cone $O \subset \mathbb{R}_{1+1}$.

Observation

It holds that $\underline{A}(O_1)$ and $\underline{A}(O_2)$ commute if O_1 and O_2 are causally separated since every QFT on $dS^{(r)}$ fulfills the locality condition and the embedding χ_r is conformal, therefore preserves causality relations.

Proposition 1

(i)
$$\chi_r \begin{pmatrix} t \\ q \\ 0 \end{pmatrix} \xrightarrow[r \to \infty]{} \begin{pmatrix} t \\ q \\ 0 \end{pmatrix}$$

(ii) $\boldsymbol{g}_L(r) \boldsymbol{g}_{L'}(r) \boldsymbol{g}_{(LL')^{-1}}(r) \begin{pmatrix} t \\ q \\ x_2 \end{pmatrix} = \begin{pmatrix} t \\ q \\ x_2 \end{pmatrix}$

In the limit $r \to \infty$, $\boldsymbol{g}_L(r)$ furnishes a group contraction from $SO_0(1,2)$ to $\mathcal{P}^{\uparrow}_+(2)$ in the sense of [Mickelsson and Niederle (1972)]

(iii)
$$\boldsymbol{g}_{L}(r)\chi_{r}\begin{pmatrix} t\\ q\\ 0 \end{pmatrix} \xrightarrow[r \to \infty]{} L\begin{pmatrix} t\\ q\\ 0 \end{pmatrix}$$

Proposition 2

Let $\underline{\omega}^{(\infty)}$ be a scaling limit state of $\underline{\mathcal{A}}$, with GNS representation $(\mathcal{H}^{(\infty)}, \pi^{(\infty)}, \Omega^{(\infty)})$

(I) The family of C^* algebras $\mathcal{M}(O) = \pi^{(\infty)}(\underline{\mathcal{A}}(O))$ indexed by the double cones $O \subset \mathbb{R}_{1+1}$ fulfills isotony and locality (spacelike commutativity)

(II)

$$\pi^{(\infty)} \circ \underline{\alpha}_{\boldsymbol{g}_{L}} \circ \underline{\alpha}_{\boldsymbol{g}_{L'}} = \pi^{(\infty)} \circ \underline{\alpha}_{\boldsymbol{g}_{LL'}}$$
$$\pi^{(\infty)}(\underline{\alpha}_{\boldsymbol{g}_{L}}(\underline{\mathcal{A}}(\mathcal{O})) = \pi^{(\infty)}(\underline{\mathcal{A}}(\mathcal{LO}))$$

Hence, by invariance of $\underline{\omega}^{(\infty)}$ under the $\underline{\alpha}_{g}$, there is a unitary group representation U(L), $L \in \mathcal{P}^{\uparrow}_{+}(2)$ on $\mathcal{H}^{(\infty)}$ so that

$$U(L)\mathcal{M}(\mathcal{O})U(L)^*=\mathcal{M}(L\mathcal{O}) \quad ext{and} \quad U(L)\Omega^{(\infty)}=\Omega^{(\infty)}$$

(III) The unitary group representation U(L) of $\mathcal{P}^{\uparrow}_{+}(2)$ fulfills the relativistic spectrum condition.

In summary: Any scaling limit theory

 $(\mathcal{H}^\infty,\mathcal{M},U,\Omega^\infty)$

is an AQFT on \mathbb{R}_{1+1} in vacuum representation.

To be addressed:

- (*) Is that vacuum representation irreducible?
- (*) Is the scaling limit theory non-trivial? (OK e.g. for KG-field on every $dS^{(r)}$) How does it relate to the theory at finite scale?
- (*) How do we know we have the same QFT on any $dS^{(r)}$ relation to "same physics in all spacetimes"

[Fewster, RV (2012)], cf. [Kay (1978)]