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Background

Perturbative AQFT led to a new constructive scheme for quantum physics
Ingredients:
@ classical systems, orbits in configuration space, Lagrangeans

@ operations (perturbations of system), labelled by functionals on
orbits (fixed by potentials, durations in time)

@ arrow (direction) of time; entering into the microworld by order
(succession) of operations

Result: dynamical C*-algebra for given Lagrangean; commutation
relations efc arise from its intrinsic structure.

New look at quantum physics; no a priori "quantization rules"

This talk: application of scheme to classical mechanics
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Classical mechanics

Notation:
N particles in R®, equal masses, distinguishable
positions X = (X1,...,xy) € RSN

continuous orbits x : R — RSN, family denoted by %,
loops X : R — RSN with compact support, form vector space %, C ¢,
velocities x : R — RSN

Perturbations:

(given by potentials, time dependencies) are described by space .# of
functionals F:% — R

Fx] = /dt F(t, x(1))
t,x — F(t,x) = fo( +ng
where fy € 6o, gk € D(R®), Vi contlnuous bounded

Support of F: union of supports of underlying test functions
Shifts: F— F¥*o, xo € 4o givenby Xx+— FX°[x] = F[x + Xq]



Classical mechanics

Lagrangeans:
t— L(x(1) = (1/2) x(t)?> — V(x(t)), X€E;
action [dtL(x(t)); relative action for loops Xo € %p:
OL(x0)[X] = [dtx(t)(L(x(t) + xo(t)) — L(x(1)))
with x [ supp Xg = 1 (note: element of .7, linear term x appears)

Stationary points of action: Euler-Lagrange equation
x(t)+oV(x(t))=0

Propagators: ‘“inverses” of K = —g—; ie. KAy =AK=1

advanced Ap, retarded Ag, mean Ap = (1/2)(Aa+ AR)
commutator function: A =Agp— Ay, KA=AK=0



Dynamical algebra

Step 1: given a Lagrangean £, construct a dynamical group G,

Definition: G is the free group generated by symbols S;(F), F € .#,
modulo the relations

(i) Sc(F) = Sp(F* +0L(xg)) forall Fe %, xqg€ %

(i)  Sg(F1)Se(F2) = Se(Fy + F2) whenever Fy has support in the
future of F

Remarks: the elements of G, describe the effects of perturbations on
the underlying system

(i) F=0implies S;(0L(xg)) = S(0) =1 (Euler-Lagrange equation)

(i) constant functionals F, : .# — h € R have arbitrary support in time;
thus S(F)S(Fw) = S(F + Fn) = S(F,)S(F) (form central subgroup)
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Dynamical algebra

Step 2: proceed from G to *-algebra A,

sums: > ¢S, c€C, S€ G, span A,

adjoints: (3" ¢S)* = >.¢S~" (S unitary operators)

products: fixed by distributive law

fixing scale: S(F,) =e™1, h€R (amounts to atomic units)
norm: algebra has faithful states and thus a (maximal) C*-norm

Definition: Given ., the corresponding dynamical algebra A is the
Cr-algebra determined by the dynamical group G.

No quantization conditions, functional integrals efc ; only classical
concepts used (“common language”, cf. Bohr's doctrine)



Derivation of Heisenberg relations
Consider non-interacting Lagrangean
t Lo(x(1) = (1/2) X(1)?
Simplest (linear) perturbations (fo, x) = [dt fo(t) x(t)
X — Fg[x] = (fo, X) + , fo €%
Definition: W(fo) = S; (Fz,), fo € %o.

(1) W(Kxg) =1, Xo€ %
2) W(fo)W(g,) = e~ /2H0R0) W(fy +gg), fo.g € Go

Interpretation: Weyl operators W(xq) = e/*0Q) x, € %,

(1) generators solutions of Heisenberg eq.: t — Q(t) = Q + tQ
(2) [Q. Q] =idk1, [Qk. Q] =[Q. Q] =0

Physics: operators of position @ and momentum P = Q



Derivation of Heisenberg relations

Proofs:
(1) (dynamics) Xo € %o recal: K = - &
X — Fix,[X] = (KXo, X) + (1/2)(KXo, ApKXp)
= (X0, X) + (1/2)(X0, Xo) = 6 Lo(X0)[X]
hence Sr,(Fix,) = SLO(5£0(XO)) = S,(0) = 1;
similarly  Sg,(Fr,+kx,) = Sco(Ff,)
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Derivation of Heisenberg relations

Proofs:
(1) (dynamics) Xo € %o recal: K = - &
X = Fixo[X] = (KXo, X) + (1/2)(KXo, ApKXo)
= (Xo, X) + (1/2)(X0, X0) = Lo(X0)[X]
hence Sg,(Fkx,) = Sc,(0Lo(X0)) = S,(0) =1;
similarly Sz, (Fto+kx,) = Stco(Fi,)
(2) (Weyl relations) Given fy, gy, let fo + Kxq be later than g,. Then
Sco(Fto)Sco(Fao) = ScoFrotkxo)Seo(Fay) =

Linearity of F¢[x] with regard to x implies
- Sﬁo(Ffo—‘rKXo—l-go + F )

=e Sﬁo(Ff0+KX0+go) = el SLO(Ff0+g0)
where

== —(1/2){fo + KXo, Agy) = —(1/2)(fo, Agy) -



Interacting theories

Change of Lagrangean (potentials V as before)
t— L(x(1)) = Lo(x(t)) — V(x(1))
temporary perturbation (x smooth characteristic function)
t— Ly (x(1)) = Lo(x(1)) — x(t) V(x(t))

Vi (t.x(1))
Definition: (cf. relative scattering matrices)

S (F) = Seo(— Vo)1 Se(F = Vy) €
Properties: (elementary computation)
S, (F* + 6L, (X0)) = Sc, (F)
Sc (F1)Sc, (F2) = Se (Fi+F) if Fy is later than F

Conclusion: defining relations for dynamical algebra A,

F e

)

(i)
(ii)



Interacting theories

Goal: limit y — 1 (global dynamics)
Note: LetI c Rand x [ I=1,then 6L, (xo) = dL(Xx0) if Xo € Gp(I)
Definition: A, (I) algebra generated by S;. (F), F € 7 (I).

Observation: A, (I) ~ A, (I) and algebras A, (I) for different x are
related by inner automorphisms of

Detailed analysis: for increasing intervals I, and functions x, there
exist injective homomorphisms 3, : A/ (1) — such that

Y= Iig‘ﬂn

point-wise in norm on A, = J; Az (D).

Let Lo, L be Lagrangeans. There exist monomorphisms v : Ay — Ag,
such that v(A.(I)) € Ag,(I) for any I and bounded 1 O 1.
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Representations

Consider Schrédinger representation of Q, P on H g with dynamics £
Claim: operators S(F) are represented by time ordered exponentials.

Problem: For F € .7, determine T(F) = T '/ st F(Q+tP)
bounded functionals F,: Dyson expansion

T(Fp) =1+ i [ dty ... [ dtk F(Q+ t;Py) - Fuo(Q + tiPy)
linear ( ) L: solution of linear differential equation

T(Ly,) = e/ /ot fo(D(@+P) g=(i/2)fo.B0fs) — W(fq) e~ (/) fo:ofs)
combination: T(Fp + Lg,) = T(F, “™) T(Ls,)

Ansatz based on results of structural analysis; it has all required
properties
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Representations

Proof: E.g. “dynamical relation” for bounded functionals F,

T X T X - X
T(Fbo+ dLo(X0)) = T(Fbo + FKxo) = T(Fbo + Fy ‘|'LKxo)
= T(F24"%0) " T(Lixy) = T(FR2~ ") T(Ficx,) = T(Fb)
—_—— N——
Fp 1
Definition: Representation (7g, Hs) of A, fixed by putting
75(Sc,(F)) =T(F), FeZ.

Other algebras A/ are represented by (7, Hg), where m = ms oy

(i) The representations (m, Hg) of A are “regular” and irreducible
(i) This holds also true for = | A.(L) for any finite interval 1
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Observables, statistics and operations

Task: Using only operations, (i) compute probability that a state has
the property described by a projection E and (ii) determine properties
of the state after the operation.

Definition: Let (7, H) be irreducible representation of A, let Q € H,
and consider vector state w(-) = (Q,n(-) Q) on A,. The operations
S e A, induce maps w — wg =woAdS™!
Transition probability: (“fidelity of operation”)

w-ws = [(Qm(S)Q) = |w(S)?

Let Hy C H be finite dimensional, let E be infinite projection, and let
e > 0. There exists unitary operator S. € A, such that for any Q € Hy
lw-ws, —w(E)?|<e, ws(1-E)<e.

Note: no collapse of wave functions (Llders, von Neumann); suitable
operations determine “primitive observables” [DB, E. Starmer]
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Conclusions

New look at quantum mechanics, based on classical concepts

@ system: configuration space, orbits, Lagrangean
@ operations: perturbations of system (with or without observer)
@ time: directed; its arrow matters already in microphysics

Effect of operations on system

@ described by dynamical group (composition of operations)

@ extension to C*-algebra standard procedure

@ no quantization rules; non-commutativity due to arrow of time
Consequences

@ commutation relations, familiar framework recovered

@ representation theory based on time ordered products

@ statistical interpretation can be deduced from operations

Approach works also in QFT
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