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Background

Perturbative AQFT led to a new constructive scheme for quantum physics

Ingredients:
classical systems, orbits in configuration space, Lagrangeans
operations (perturbations of system), labelled by functionals on
orbits (fixed by potentials, durations in time)
arrow (direction) of time; entering into the microworld by order
(succession) of operations

Result: dynamical C*-algebra for given Lagrangean; commutation
relations etc arise from its intrinsic structure.

New look at quantum physics; no a priori "quantization rules"

This talk: application of scheme to classical mechanics
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Classical mechanics

Notation:
N particles in Rs, equal masses, distinguishable
positions x = (x1, . . . ,xN) ∈ RsN

continuous orbits x : R→ RsN , family denoted by C ,
loops x0 : R→ RsN with compact support, form vector space C0 ⊂ C ,
velocities ẋ : R→ RsN

Perturbations:
(given by potentials, time dependencies) are described by space F of
functionals F : C → R

F [x ]
.

=

∫
dt F (t ,x(t))

t ,x 7→ F (t ,x) = f 0(t) x +
∑

k

gk (t) Vk (x)

where f 0 ∈ C0, gk ∈ D(Rs), Vk continuous, bounded

Support of F : union of supports of underlying test functions

Shifts: F 7→ F x0 , x0 ∈ C0 given by x 7→ F x0 [x ]
.

= F [x + x0]
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Classical mechanics

Lagrangeans:

t 7→ L(x(t))
.

= (1/2) ẋ(t)2 − V (x(t)) , x ∈ C ;

action
∫

dtL(x(t)); relative action for loops x0 ∈ C0:

δL(x0)[x ] =
∫

dt χ(t)
(
L(x(t) + x0(t))− L(x(t))

)
with χ � supp x0 = 1 (note: element of F , linear term x appears)

Stationary points of action: Euler-Lagrange equation

ẍ(t) + ∂V (x(t)) = 0

Propagators: “inverses” of K = − d2

dt2 i.e. K ∆• = ∆•K = 1

advanced ∆A, retarded ∆R, mean ∆D
.

= (1/2)(∆A + ∆R)

commutator function: ∆
.

= ∆R −∆A, K ∆ = ∆K = 0
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Dynamical algebra

Step 1: given a Lagrangean L, construct a dynamical group GL

Definition: GL is the free group generated by symbols SL(F ), F ∈ F ,
modulo the relations
(i) SL(F ) = SL(F x0 + δL(x0)) for all F ∈ F , x0 ∈ C0

(ii) SL(F1)SL(F2) = SL(F1 + F2) whenever F1 has support in the
future of F2

Remarks: the elements of GL describe the effects of perturbations on
the underlying system without stipulating their concrete action

(i) F = 0 implies SL(δL(x0)) = S(0) = 1 (Euler-Lagrange equation)

(ii) constant functionals Fh : F → h ∈ R have arbitrary support in time;
thus S(F )S(Fh) = S(F + Fh) = S(Fh)S(F ) (form central subgroup)
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Dynamical algebra

Step 2: proceed from GL to *-algebra AL

sums:
∑

cS, c ∈ C, S ∈ GL span AL
adjoints: (

∑
cS)∗

.
=
∑

cS−1 (S unitary operators)

products: fixed by distributive law

fixing scale: S(Fh) = e ih 1, h ∈ R (amounts to atomic units)

norm: algebra has faithful states and thus a (maximal) C*-norm

Definition: Given L , the corresponding dynamical algebra AL is the
C*-algebra determined by the dynamical group GL.

No quantization conditions, functional integrals etc ; only classical
concepts used (“common language”, cf. Bohr’s doctrine)
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Derivation of Heisenberg relations

Consider non-interacting Lagrangean

t 7→ L0(x(t)) = (1/2) ẋ(t)2

Simplest (linear) perturbations 〈f 0,x〉
.

=
∫

dt f 0(t) x(t)

x 7→ Ff 0 [x ]
.

= 〈f 0,x〉+ (1/2)〈f 0,∆Df 0〉 , f 0 ∈ C0

Definition: W (f 0)
.

= SL0(Ff 0), f 0 ∈ C0.

Theorem
(1) W (K x0) = 1, x0 ∈ C0

(2) W (f 0)W (g0) = e−(i/2)〈f 0,∆g0〉W (f 0 + g0), f 0,g0 ∈ C0

Interpretation: Weyl operators W (x0)
.

= e i〈x0,Q〉, x0 ∈ C0

(1) generators solutions of Heisenberg eq.: t 7→ Q(t) = Q + tQ̇

(2) [Qk , Q̇l ] = iδkl1, [Qk ,Ql ] = [Q̇k , Q̇l ] = 0

Physics: operators of position Q and momentum P .
= Q̇
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Derivation of Heisenberg relations

Proofs:
(1) (dynamics) x0 ∈ C0 recall: K = − d2

dt2

x 7→ FK x0 [x ] = 〈K x0,x〉+ (1/2)〈K x0,∆DK x0〉
= 〈ẋ0, ẋ〉+ (1/2)〈ẋ0, ẋ0〉 = δL0(x0)[x ]

hence SL0(FK x0) = SL0(δL0(x0)) = SL0(0) = 1;
similarly SL0(Ff 0+K x0) = SL0(Ff 0)

(2) (Weyl relations) Given f 0,g0, let f 0 + K x0 be later than g0. Then
SL0(Ff 0)SL0(Fg0

) = SL0(Ff 0+K x0)SL0(Fg0
) = SL0(Ff 0+K x0 + Fg0

).

Linearity of Ff [x ] with regard to x implies

SL0(Ff 0+K x0 + Fg0
) = SL0(Ff 0+K x0+g0

+ Fhf0+K x0,g0
)

= e ihf0+K x0,g0 SL0(Ff 0+K x0+g0
) = e ihf0+K x0,g0 SL0(Ff 0+g0

)

where

hf 0+K x0,g0
= · · · = −(1/2)〈f 0 + K x0,∆g0〉 = −(1/2)〈f 0,∆g0〉 . X
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Interacting theories

Change of Lagrangean (potentials V as before)

t 7→ L(x(t)) = L0(x(t))− V (x(t))

temporary perturbation (χ smooth characteristic function)

t 7→ Lχ(x(t))
.

= L0(x(t))− χ(t)V (x(t))︸ ︷︷ ︸
Vχ(t ,x(t))

Definition: (cf. relative scattering matrices)

SLχ(F )
.

= SL0(−Vχ)−1SL0(F − Vχ) ∈ AL0 , F ∈ F

Properties: (elementary computation)

SLχ(F x0 + δLχ(x0)) = SLχ(F ) (i)

SLχ(F1)SLχ(F2) = SLχ(F1+F2) if F1 is later than F2 (ii)

Conclusion: defining relations for dynamical algebra ALχ' AL0
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Interacting theories

Goal: limit χ→ 1 (global dynamics)
Note: Let I ⊂ R and χ � I = 1, then δLχ(x0) = δL(x0) if x0 ∈ C0(I)

Definition: ALχ(I) algebra generated by SLχ(F ), F ∈ F (I).
Observation: ALχ(I) ' AL(I) and algebras ALχ(I) for different χ are
related by inner automorphisms of AL0

Detailed analysis: for increasing intervals In and functions χn there
exist injective homomorphisms βn : AL(In)→ AL0(In+1) such that

γ
.

= lim
n
βn

point-wise in norm on AL =
⋃

IAL(I).

Theorem
Let L0,L be Lagrangeans. There exist monomorphisms γ : AL → AL0

such that γ(AL(I)) ⊂ AL0 (̂I) for any I and bounded Î ⊃ I.
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Representations

Consider Schrödinger representation of Q,P on HS with dynamics L0
Claim: operators S(F ) are represented by time ordered exponentials.

Problem: For F ∈ F , determine T (F )
.

= T e i
R∞
−∞dt F (Q+tP)

• bounded functionals Fb: Dyson expansion

T (Fb) = 1 +
∑

k ik
∫∞
−∞dt1 . . .

∫ tk−1
−∞ dtk Fb(Q + t1P1) · · ·Fb(Q + tkP1)

• linear (unbounded) L: solution of linear differential equation

T (Lf 0) = e i
R

dt f 0(t)(Q+tP) e−(i/2)〈f 0,∆Df 9〉 = W (f 0) e−(i/2)〈f 0,∆Df 9〉

• combination: T (Fb + Lf 0)
.

= T (F−∆Af 0
b ) T (Lf 0)

Ansatz based on results of structural analysis; it has all required
properties
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Representations

Proof: E.g. “dynamical relation” for bounded functionals Fb

T (F x0
b + δL0(x0)) = T (F x0

b + FK x0) = T (
︷ ︸︸ ︷
F x0

b + Fh +LK x0)

= T (F x0−∆AK x0
b ) eih T (LK x0) = T (F x0−∆AK x0

b︸ ︷︷ ︸
Fb

) T (FK x0)︸ ︷︷ ︸
1

= T (Fb) X

Definition: Representation (πS,HS) of AL0 fixed by putting

πS(SL0(F ))
.

= T (F ), F ∈ F .

Other algebras AL are represented by (π,HS), where π .
= πs ◦ γ

Theorem
(i) The representations (π,HS) of AL are “regular” and irreducible
(ii) This holds also true for π � AL(I) for any finite interval I
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Observables, statistics and operations

Task: Using only operations, (i) compute probability that a state has
the property described by a projection E and (ii) determine properties
of the state after the operation.

Definition: Let (π,H) be irreducible representation of AL, let Ω ∈ H,
and consider vector state ω( · ) = 〈Ω, π( · ) Ω〉 on AL. The operations
S ∈ AL induce maps ω 7→ ωS

.
= ω ◦ Ad S−1

Transition probability: (“fidelity of operation”)
ω · ωs

.
= |〈Ω, π(S)Ω〉|2 = |ω(S)|2

Theorem
Let HN ⊂ H be finite dimensional, let E be infinite projection, and let
ε > 0. There exists unitary operator Sε ∈ AL such that for any Ω ∈ HN

|ω · ωSε − ω(E)2| < ε , ωSε(1− E) < ε .

Note: no collapse of wave functions (Lüders, von Neumann); suitable
operations determine “primitive observables” [DB, E. Størmer]
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Conclusions

New look at quantum mechanics, based on classical concepts
system: configuration space, orbits, Lagrangean
operations: perturbations of system (with or without observer)
time: directed; its arrow matters already in microphysics

Effect of operations on system
described by dynamical group (composition of operations)
extension to C*-algebra standard procedure
no quantization rules; non-commutativity due to arrow of time

Consequences
commutation relations, familiar framework recovered
representation theory based on time ordered products
statistical interpretation can be deduced from operations

Approach works also in QFT

: Klaus Fredenhagen
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