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Referat: In dieser Arbeit wird ein Kriterium für lokales, thermisches Gleichgewicht
in Quantenfeldtheorien auf flacher Raumzeit von Buchholz, Ojima und Roos zunächst
mit einem idealisierten Messprozess in Verbindung gebracht, dann das Kriterium auf
allgemeine Raumzeiten verallgemeinert und die Konsequenzen für lokale Energiedichten
in Situationen, in denen dieses Kriterium erfüllt ist, untersucht. Die Untersuchungen
werden dann auf kosmologische Raumzeiten eingeschränkt und nach Entwicklung einer
Methode zur Berechnung der relevanten, thermodynamischen Größen wie lokalen Tem-
peraturen auf diesen Raumzeiten wird gezeigt, dass derartige Situationen lokalen ther-
mischen Gleichgewichts zu einem gegebenen Anfangszeitpunkt tatsächlich in der Theo-
rie realisiert werden können. Der Formalismus und die Zeitentwicklung der thermalen
Größen werden für de Sitter-Raumzeit als Beispiel illustriert.
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1 Introduction and motivation

After its initial success in predicting black-hole radiation [Haw75], a finite temperature of
the vacuum for accelerated observers (the Unruh-effect) [Unr76] and “particle creation”
in expanding universes [Par69], quantum field theory on curved spacetimes has by now
become a standard tool in (inflationary) cosmology, where it is used to calculate the
spectrum of initial density fluctuation in the early universe as a result of fluctuations of
quantum fields [Muk05, Wei08, Str06]. On the other side, the discovery that quantum
field theory on curved spacetimes is best formulated in the algebraic approach [Wal94],
the recognition of the class of Hadamard states as basic states of physical relevance
and the reformulation of their properties using microlocal analysis [Rad96b] and finally
the realization that the covariance principles from general relativity can be carried over
to this framework [HW01, BFV03] has lead to huge progress in the mathematically
precise formulation of this theory (mainly for free and perturbatively defined fields): To
name just a few highlights, the problem of defining Wick- and time-ordered products
was solved [BFK96, HW01], building upon them perturbation theory was defined and
investigated [BF00, HW03, Hol08], sometimes leading to interesting insights for the free
theory [HW05] and Quantum Energy Inequalities [For78] were derived in many different
situations [Few07a, Rom05].
However, during this mathematically rigorous (re)formulation of quantum field theory

on curved spacetime it became increasingly clear that this theory allows for a huge num-
ber of quantum mechanical states, but in contrast to quantum field theory on Minkowski
spacetime where there is a clear-cut interpretation of (sets of) states by their particle
content, as thermal states or states approximating classical field configurations (coher-
ent states), such a characterization is not a priori available. In recent years there has
therefore been a renewed interest in finding physically motivated criteria to select states
on specific spacetimes and investigate their properties and quite a few results have been
achieved for the case of cosmological spacetimes [Olb07, Küs08, DMP09].
In this work we suggest one more criterion which focuses on the concept of local

thermodynamic equilibrium that implicitly permeates many cosmological discussions
in the form of temperature, pressure, energy densities etc. that are supposed to vary
in space and time. Of course the importance of topics like thermal equilibrium, non-
equilibrium, return to equilibrium etc. is well understood in cosmology and in fact
the simplest, homogeneous and isotropic models with matter-content described as an
ideal fluid can be seen as thermodynamic models. Also on a more advanced level, for
example in the discussion of nucleosynthesis, such concepts play an important role; there
Boltzmann equations are the most important tool (a standard reference is [KT90]), but
these discussions, if they are not on a (semi-)classical level, mostly use quantum field
theory in Minkowski spacetime or at least at some point refer to concepts (preferred
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1 Introduction and motivation

states) that strictly speaking only make sense there. Whereas for some regimes this is
certainly justified, for the situations where “fluctuations” of the quantum fields are the
object of interest only the full quantum field theory on the cosmological background
is trustworthy, so one has to formulate the criteria for the selection of states at this
level. One approach where this was attempted are the states of low free-energy [Küs08]
modeled after the states of low energy [Olb07]; we will briefly comment upon them later.
The criterion we want to propose here, which was basically already formulated in

[BS07], is based on a notion of local thermal equilibrium (in the following often abbrevi-
ated by LTE) by Buchholz, Ojima and Roos [BOR02]. The main idea of this approach
to local thermodynamic equilibrium is to perform the tasks of identification of states
in local thermodynamic equilibrium and the assignment of local, thermal parameters
to such states using sets of point-localized observables Sx at each spacetime point and
sets of reference states whose thermal interpretation is already well known (e.g. global
equilibrium states). Furthermore, as a regularity requirement, the expectation value of
the point-localized observables in the reference states has to exist.
The localized observables have the interpretation of (idealized) limits of measurements

of density-like thermal quantities (temperature, energy-density, pressure etc.) in smaller
and smaller regions of spacetime; the physical interpretation of the observables (which
observable belongs to which thermal quantity?) is done by evaluating their expectation
values in the reference states; for many fields one gets for example at each x an ob-
servable whose (scalar) expectation value in global equilibrium (reference) states with
temperature T is a simple function of the the temperature, so this observable has the
interpretation “local thermometer”.
A states ω for which there exists a reference state ωref such that the expectation

values for all observables in Sx in ω and ωref agree is then called locally thermal at x; as
far as the expectation values of the thermal observables are concerned, ω and ωref are
indistinguishable. Therefore it makes sense to assign the thermal parameters determined
by them also to ω at this point (so ω gets e.g. assigned a temperature at x). Among
these thermal parameters the same relations as in global equilibrium situations hold, so
if there exists for example an equation of state relating pressure and temperature and we
have thermal observables allowing the local determination of these two parameters, then
the equation of state will also hold for the locally assigned pressure and temperature at
points where the state is locally thermal. Finally, we get to a condition of local thermal
equilibrium in spacetime regions by requiring local thermality at each point x of the
region, where the reference state may depend on x, which will then lead to assignments
of thermal parameters varying in space and time for states fulfilling this condition.
After introducing the necessary background in chapter 2, we start by relating the

original LTE formalism on Minkowski spacetime to idealized measurements, modeled
using a two-niveau system in chapter 3. This gives some motivation for the specific
choice of the Sx-spaces that was made in the quantum field theories on Minkowski
spacetime, where the formalism was already applied; since it is based on perturbation
theory it is does unfortunately not (yet) deduce the specific choices of Sx-spaces as a
consequence of these idealized measurements.
Using the concept of local covariant quantum fields [BFV03] and insights gained in
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the discussion of the detectors we then state our criterion of local thermality (formulated
for general, globally hyperbolic spacetimes), called extrinsic local thermality. The main
point in its formulation is that the formalism of local covariant quantum fields is based
on an identification of observables in different space-times, and taking such observables
as the generators of our Sx-spaces we can (by duality) compare states on different space-
times as well, by comparing the expectation values the related observables are assigned
to by the different states. Denoting somewhat symbolically thermal observables in the
space Sx at the point x of our spacetime M as φ(x) and the related observables on
Minkowski spacetime as φo(xo), the criterion for a state ω of a quantum field theory on
this spacetime of being locally thermal at x is formulated as: There exists a state ωref,o
such that

ω(φ(x)) = ωref,o(φo(x))

for all φ(x) ∈ Sx. As in Minkowski spacetime, once we have identified the states in
local thermal equilibrium, we can then assign local, thermal properties like e.g. the
temperature to them; this provides a rigorous version of the heuristic concepts of lo-
cal temperature, pressure, etc. in the setting of quantum fields on curved spacetime
considered here.
After fixing our LTE-criterion, in chapter 4 we then go on to discuss the relation of

local thermal equilibrium to Quantum Energy Inequalities. These are important when
discussing quantum field theory on a curved spacetime as semiclassical theory, i.e. when
trying to solve the Einstein equations

Gab = 8πTab

with the stress-energy tensor Tab on the right-hand side given as the expectation value
ω(T ren

ab ) of a quantum field. Quantum Energy Inequalities restrict the values this expec-
tation value can take, providing some replacement for positivity properties that hold for
stress-energy tensors from classical matter models but not for ω(T ren

ab ).
The existence of some relation between local thermality and the energy contents of

states is plausible, since among the thermal observables there are elements T thermal
ab which

are closely linked to the stress-energy tensor. More precisely, the (renormalized) stress
energy tensor T ren

ab of the quantum field theory can be written as

T ren
ab = T thermal

ab + Remainder ,

where the remainder term contains another thermal observable directly related to the
temperature (the scalar thermometer from above) and geometric, state independent
terms, and using this we then arrive at two energy inequalities for states with bounded
temperature, one along finite parts of geodesics (a so called QWEI) and the other along
infinitely extended, lightlike geodesics (called ANEC). We end the chapter by a brief
remark on a possible generalizations of the results.
After the formulation of the LTE-condition and the investigation of some consequences

on general spacetimes we then come to the question of existence of such states in chapter
5, where we restrict the discussion to cosmological spacetimes. More specifically, we
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1 Introduction and motivation

investigate the class of Robertson Walker spacetimes with flat, spatial sections; though
these are highly idealized models of our universe, they are still the basis of many models
in cosmology and their high degree of symmetry allows a rather thorough and explicit
investigations of (linear) quantum field theories on them.
In this chapter we actually pursue two goals: One is the construction of states which

are locally thermal on a Cauchy surface; the other is to explore the link between the
rigorous (coordinate space) formulation of the Hadamard condition and covariant Wick
products and techniques using mode-decompositions. The main problem with the coor-
dinate space formulation is that it is only in special cases usable for concrete calculations;
the methods using mode-decompositions, which are adapted to the class of spacetimes
at hand, are much more suitable but often not very rigorous. While initially such an in-
vestigation was not planned, it turned out that because the criterion of local thermality
requires very explicit knowledge of some expectation values of Wick products, one needs
good methods to calculate them. While the ideas underlying the general procedure are
long known, their discussions either mainly focus on the stress-energy tensor and pre-
date precise formulations of the Hadamard conditions (see e.g. the book of Birrell and
Davies [BD84]) or are of more general nature [LR90, JS02, Pir93], which makes them not
especially suitable for the explicit calculation (and even the investigation of regularity
like e.g. the Hadamard property on concrete, cosmological spacetimes).
We therefore start chapter 5 with a discussion how the calculation of concrete ex-

pectation values and (most of the) regularity question can be reduced to questions on
Cauchy surfaces for the spacetimes at hand; the underlying principle is the Klein-Gordon
equation which the field has to satisfy. Just as in the classical case, where the values of
solutions to the Klein-Gordon equation can be deduced from values on a Cauchy sur-
face, which consist of the value of the solution and time-derivative on this surface, we
show that also here the (relevant) values of the (renormalized) two-point function W SHP

ω,k ,
which encodes all the Wick-products and regularity properties can be obtained from its
restriction and the restriction of its first time-derivatives to a Cauchy surface (strictly
speaking, concerning regularity, we only give a necessary criterion for Hadamard states
and sketch, how this could be turned into an equivalence).
We then go on to establish the relation between the definition of Wick products

in terms of the (renormalized) two-point function on the spacetime and certain inte-
gral expressions that are obtained by “renormalizing under the integral” in the mode-
decomposition of the (non-renormalized) two-point function.
Next we briefly describe, how the results obtained so far provide an alternative method

to the adiabatic vacua in investigating, whether a given state is Hadamard, and briefly
illustrate it on the example of de Sitter spacetime. We then return to the calculation of
the expectation values of interest.
With these calculational methods in place we finally attack the problem of constructing

LTE states on a Cauchy surface. The procedure used here starts from the observation
that after fixing an initial state ωini on the spacetime and a Cauchy surface, different
states can be obtained by modifying the initial data of the initial state on this Cauchy
surface. The expectation values of the thermal observables φ(x) for points x on this
Cauchy surface can then be expressed in terms of this modification as some ∆[φ(x)]
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and consequently the LTE condition can be rewritten as a set of equations between the
expectation values ωref,o(φo(x)) of the thermal observables in some reference state, a
term Φini[φ(x)] = ωini(φ(x)) and ∆[φ(x)] of the form

ωref,o(φo(x)) = Φini[φ(x)] + ∆[φ(x)] .

For each φ(x) this gives one equation and the task is now to find a modification of the
initial state and a reference state ωref such that they are simultaneously fulfilled. It
turns out that the modifications of the initial state can be formulated in terms of two
functions and the ∆[φ(x)] are then given as moments of these functions; finally using
the known form of the left-hand sides of this equations we show that they always have
solutions for sufficiently high temperatures, i.e. if we choose on the left hand side as
reference states global equilibrium states on Minkowski spacetime with sufficiently high
temperature.
While this construction has the advantage of producing states on the whole spacetime

(i.e. the two-point function satisfies the positivity condition on the whole spacetime
and not just the Cauchy surface used in the construction), this is not true for the LTE-
conditions which do not necessarily hold outside this Cauchy surface. While this is of
course unpleasant, it is not completely unexpected from a physical point of view: Since
the theory considered is a free field, there is no mechanism at work which thermalizes
the perturbations coming from the coupling to the changing external gravitational field.
One would however intuitively expect that these perturbations are increasingly less

severe as the (local) temperature of the states increases and the interaction time with the
gravitational field decreases and this will be briefly commented upon after the construc-
tion of the states. We finally end the chapter by once more coming back to our example
and illustrating the construction there, ending with plots giving numerical examples of
the development of the thermal parameters assigned on a given Cauchy surface.
Comparing the methods and results to what has been done in the context of states of

low (free-)energy, the main difference is that our criterion of local thermality is in fact
a point-wise one, whereas the criterion of low (free-)energy involves integrals over test-
functions. In addition, we get a procedure to locally assign thermal properties, which
is closer to what is really assumed in cosmological calculations. On the other hand, we
are so far only able to (strictly) control our criterion on a Cauchy surface, whereas the
criterion of low (free-)energy is trivially fulfilled on the whole spacetime; nevertheless
one should notice that at least a posteriori and for concrete spacetimes we can make
qualitative statements about the extent to which the criterion of local thermality holds,
as is illustrated by the example of de Sitter spacetime at the end of this work.
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1 Introduction and motivation
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2 Technical background

In this chapter the technical background of this work will be described. We start by
giving the construction of the (neutral) Klein-Gordon field on globally hyperbolic space-
times in the algebraic approach, move on to review the concept of locally covariant
quantum fields to the extent required in the following and then introduce the class of
cosmological spacetimes considered in the following. Finally, for these spacetimes more
concrete realizations of some of the constructions described for general globally hyper-
bolic spacetimes will be given. Most of the material covered is standard; exceptions are
the part on regularization aspects of the Hadamard parametrix in the special coordi-
nates chosen, the representation formulas (2.2.27) and (2.2.29), which are worked out
versions of the non-Fock case of homogeneous and isotropic states only treated partially
in [LR90], and the section on the specification of such states by “initial values” for the
two-point function. References to the literature will be given in the individual sections.
We use units where ~ = c = G∗ = 1.

2.1 General spacetimes

2.1.1 The Klein-Gordon field on globally hyperbolic spacetimes

Spacetime is taken here as a four-dimensional, smooth and oriented semi-riemannian
manifold (M, g), where the metric tensor g has signature (+ − − − −). The space of
k-times continuously differentiable functions on M will be denoted by Ck(M), the space
of smooth function on M by C∞(M) and the subspace of (test-)functions with compact
support by C∞0 (M). The measure induced on M by g will be denoted by µg; this
preferred measure allows an identification of functions and densities on M and using
this identification distributions on M , which following [Hör03] (see also [GKOS01] for
a more detailed discussion) are at first defined as linear functional on densities, can be
identified with functionals on C∞0 (M) by composition with the identification map. In
practice, this means that the (regular) distribution associated to a function F ∈ C∞(M)
is given by

C∞0 (M) 3 ϕ 7→
∫
M
F (x)ϕ(x)dµg(x) ,

which formally looks exactly like on Rn; when written in charts the volume-element√
|det g| will however appear in addition to the usual expression on Rn.
We will use both abstract index notation [Wal84] and decompositions with respect

to specific bases; to distinguish the two different meanings of indices, we will use latin
indices in the first and greek indices in the second case, furthermore Einstein summation
convention is used.
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2 Technical background

The Levi-Civita connection determined by g will be denoted by ∇, concerning its
curvature, Ricci-tensor Rab and curvature scalar R we take the conventions [-,-,-] in the
classification scheme of [MTW73], i.e. following the book of Birrell and Davies [BD84].
The wave operator gab∇a∇b determined by g is denoted by �g.
To be able to construct quantum field theories onM , the spacetime is furthermore as-

sumed to be time-orientable and globally hyperbolic, which implies among other things:
[BGP07], [BS05]

1. There exists a smooth function T : M → R, whose gradient is an everywhere
non-vanishing, future-pointing vector field. The surfaces T−1(t) ⊂ M for t in the
range of T are Cauchy surfaces for M .

2. The Klein-Gordon operator, defined for m, ξ ∈ R+
0 by Pm,ξ := �g + m2 + ξR,

has uniquely determined retarded and advanced solution operators E± mapping
test-functions f ∈ C∞0 (M) into smooth solutions to the Klein-Gordon equation
satisfying

Pm,ξE±f = E±Pm,ξf =f for all f ∈ C∞0 (M)
supp

(
E±f

)
⊂J± (supp(f)) ,

where J± (G) is the causal future/past set of a set G ⊂M [BGP07].

Using these operators, one can define an operator E as the difference E− − E+ and in
addition the bilinear form

E (f, f ′) :=
∫
M
f(x)(Ef ′)(x)dµg(x) .

By definition E clearly satisfies Pm,ξEf = EPm,ξf = 0 for all f ∈ C∞0 (M) and this implies
E (f,Ef ′) = 0. Using the fact that

∫
M (Pm,ξf)(x)h(x)dµg(x) =

∫
M f(x)(Pm,ξh)(x)dµg(x)

for f, h ∈ C∞(M) and one of them in addition compactly supported, we see that also
E (Pm,ξf, f ′) = 0 (this can also be deduced from the fact that E is antisymmetric, which
is also not hard to show [Wal94]) i.e E is a bi-solution to the Klein-Gordon equation in
the sense of distributions.
Using this data, one can now construct the ∗-algebra A(M, g) of the Klein-Gordon

field as the ∗-algebra generated by the unit-element 1 and symbols φ(f), f ∈ C∞0 (M),
satisfying the additional relations (f, f ′ ∈ C∞0 (M), α ∈ C)

Linearity: φ(αf + f ′) = αφ(f) + φ(f ′).

Neutral field: φ(f)∗ = φ(f).

Klein Gordon equation: φ(Pm,ξf) = 0.

Commutator: [φ(f), φ(f ′)] = iE (f, f ′)1.

([φ(f), φ(f ′)] = φ(f)φ(f ′)−φ(f ′)φ(f) the commutator). Because E is an antisymmetric
bi-solution, the commutator relation is compatible with the other three relations.
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2.1 General spacetimes

The hermitian elements in A(M, g) correspond to observables of the quantized system;
as will turn out later we will need to enlarge this set of basic observables, i.e. pass to a
larger algebra containingA(M, g). The other ingredient for the description of a quantized
system besides the observables are the states; in the algebraic approach chosen here these
are defined as functionals ω : A(M, g)→ C which fulfill the additional conditions

Normalization: ω(1) = 1.

Positivity: ω(A∗A) ≥ 0 for all A ∈ A(M, g).

As already discussed in the introduction, the set of all such states for a quantum field
theory is enormous and in addition contains many elements that lack regularity proper-
ties required to carry out important constructions. We will therefore restrict the set of
states by several requirements, first to the set of quasifree Hadamard states and then, for
the cosmological spacetimes under consideration, even further to the set of homogeneous
and isotropic states.
First note that a state ω is determined by its n-point functions W ω

n defined by

W ω
n : (f1, . . . , fn) 7→ ω

(
φ(f1) . . . φ(fn)

)
.

As a first regularity property, we demand that these n-point functions are distributions
in all their arguments (and then by the kernel theorem are even distributions on Mn

[RS75]). Next, looking at the properties of A(M, g) one notices that they are formu-
lated in terms of algebra elements containing at most two generators φ(f). It turns
out that it is possible to do something similar on the set of states; there is a set of
states called quasifree states, which are uniquely determined by their two-point func-
tion, i.e. the value of the state on products of two elements1. Note that every monomial
φ(f1)φ(f2) . . . φ(fn) in the field-operators can be written as a sum of totally symmetric
products of field operators times commutators2; since the commutators are multiples of
the unit in A(M, g), it is thus sufficient to give the (totally) symmetric parts W ω,s

n of
the n-point function in order to specify ω. (Formally) differentiating the function

(t1, . . . , tn) 7→ (−i)n exp
(
−1

2W ω,s
2 (t1f1 + . . .+ tnfn, t1f1 + . . .+ tnfn)

)
with respect to t1, t2, . . . , tn and then setting t1 = t2 = . . . = tn = 03 gives a to-
tally symmetric expression in f1, . . . , fn and taking this as W ω,s

n (f1, . . . , fn) defines the
1If one requires the state to be completely specified by its values on products of no more than two field
operators, one also has to give its one-point function (the value of the zero-point function is fixed by
the normalization condition). In the definition of quasifree states given here, the one-point functions
are required to vanish.

2Replacing “contraction” of the elements Ai and Aj by 1
2 [Ai, Aj ] and “normal ordered product of

A1 . . . Ak” by “symmetrized product of A1 . . . Ak” in Wick’s theorem [BS80] provides a procedure for
doing this.

3Note that this defines W ω
n by polarization [Dol03] from the W ω,s

n (f, . . . , f) obtained by equating the
terms of order tn in (the series expansion of) the equation ω

(
eitφ(f)) = exp

(
− t

2

2 W ω
2 (f, f)

)
, which

is often given as the relation defining a quasifree state.
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2 Technical background

quasifree state with two-point function W ω
2 . One directly sees that the symmetric part

of the n-point functions for odd n all vanish. Because the expression of a product of an
odd number of field-operators as a sum of totally symmetric products of field operators
only contains totally symmetric products, also the full n-point functions for odd n van-
ish. Besides being a convenient choice, since all aspects of the state can be discussed in
terms of its two-point function, the justification for the use of quasifree states is that
most other physical states can be derived from those [Ver94]; furthermore the global
thermal equilibrium states on Minkowski spacetime, used later as a basis for the concept
of local thermal equilibrium, are of this form.
Before coming to the extension of the algebra of observables already mentioned, we

need one more restriction, which can intuitively be interpreted as a restriction on the
“small-distance”↔ “high-energy” behaviour of the states and on a more technical level is
a replacement for the spectrum condition on curved spacetimes. To define this condition,
we first need to introduce some notation related to spacetime geometry:

Definition 2.1. For x ∈ M , denote by expx the exponential map at x ∈ M . A set
N ⊂ M is called geodesically starshaped with respect to x ∈ N , if there exists an open
set N ′ ⊂ TxM , which is starshaped wrt. 0 ∈ TxM , such that exp : N ′ → N is a
diffeomorphism. If N is geodesically starshaped with respect to all its points x ∈ N ,
it is called geodesically convex. On N ×N the signed squared geodesic separation σ is
defined by

σ(x, x′) = −gx(exp−1
x (x′), exp−1

x (x′))

(gx : TxM × TxM → R the metric tensor at x ∈M).

Remark 2.2. From the definition it is clear that σ is smooth on N ×N and from the
definition of the exponential map it follows that σ is symmetric. Furthermore, one can
show [Fri75]:

1. σ fulfills the partial differential equation

gab(∇aσ)∇bσ = −4σ . (2.1.1)

2. For fixed x′, ta : N 3 x 7→ −gab∇bσ(x, x′) defines a vector field which at x is
tangent to the (unique) geodesic through x′ and x.

Concerning the existence of geodesically convex sets, it can be shown that M can be
covered by such sets [O’N83], so for each x ∈ N we have a geodesically convex neigh-
bourhood N of x.

Using the above time function T , guaranteed to exist on globally hyperbolic space-
times, we can now define the functions σε as

σε : (x, x′) 7→ σ(x, x′) + 2iε
(
T (x)− T (x′)

)
+ ε2 .
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2.1 General spacetimes

Define the functions ∆1/2, vj and j ∈ N as the solutions to the (recursive system of)
partial differential equations

2gab(∇aσ)∇b∆1/2 + (8 + �gσ)∆1/2 = 0 (2.1.2)
2gab(∇aσ)∇bv0 + (4 + �gσ)v0 = −L2Pm,ξ∆1/2 (2.1.3)

2(j + 1)gab(∇a)σ∇bvj+1 + (j + 1)(�gσ − 4j)vj+1 = −L2Pm,ξvj (2.1.4)

with initial conditions ∆1/2(x, x) = 1. Using the method of characteristics and part 2.
of remark 2.2, it can be shown that these equation have uniquely determined solutions
remaining finite on approach to the diagonal (i.e. satisfying limx→x′ vj(x, x′) < ∞) on
N×N and these are in addition smooth and symmetric [BGP07, Mor99]. The regularized
Hadamard-parametrix for k ∈ N is then defined as

Gk,ε :=∆1/2

σε
+ v(k) log

(
σε
L2

)
v(k) := 1

L2

k∑
j=0

vj

(
σ

L2

)j
,

where L ∈ R is some constant (length-scale) introduced to make the argument of the
logarithm dimensionless. Notice that Gk,ε is determined by the local spacetime geometry,
the parameters m, ξ and a priori the time function T . With these definitions in place
we can now state our regularity requirement:

Definition 2.3. A state ω is called Hadamard if for any geodesic convex neighbourhood
N of any given point x0 one can find a sequence Hω

k ∈ Ck(N × N), such that for all
f1, f2 ∈ C∞0 (N) one has

W ω
2 (f1, f2) = lim

ε→0+

1
4π2

∫
N×N

(
Gk,ε(x, x′) +Hω

k (x, x′)
)
f1(x)f2(x′)dµg(x)dµg(x′) .

For later use, define the distribution

Gk(f1, f2) = lim
ε→0+

1
4π2

∫
N×N

Gk,ε(x, x′)f1(x)f2(x′)dµg(x)dµg(x′)

and denote its symmetric part 1
2 (Gk(f1, f2) + Gk(f2, f1)) by Gsk(f1, f2). It can be shown

to be independent of the choice of time function [KW91], which is the justification for
not explicitly referring to the time-function in definition 2.3. In the chapter on Quantum
Energy Inequalities, we will sometimes only need that the two-point function of a state
is of the form just described but not that it is quasifree; we will refer to such states as
states with a two-point function of Hadamard type.
Hadamard states are extendable to a larger algebra containing in addition to the

observables in A(M, g) observables like the stress energy tensor and certain density-like
quantities at points that will be used to define local thermality. This extension will be
the topic of the next section.
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2.1.2 Locally covariant quantum fields and Wick products
In the original LTE-formalism by Buchholz, Ojima and Roos [BOR02], the observables
used to define local thermality are chosen as special Wick products of the field and its
derivatives. On Minkowski spacetime their definition for free fields via normal-ordering
is standard (and normal ordering is usually already introduced when defining the Hamil-
tonian of the theory) and also in the more abstract, algebraic formulation of (interacting)
quantum field theory there is a worked out framework to define them [Bos00]. These
definitions, however, rely on the existence of a vacuum state, singled out by its behaviour
under spacetime symmetries. When trying to generalize them to quantum field theory
on a general curved spacetime, there are two questions that come up:

• Given a state ω and a representation (Hω, πω,Ωω) associated to it via the GNS-
construction [Wal94, Chap. 4], is it possible to define observables by some general-
ization of the normal ordering prescription and what is their domain of definition,
or formulated in the algebraic approach: By making use of ω, is it possible to en-
large the algebra A(M, g) and which states can be continued to this larger algebra?

• If this works for different ω: How do we find out which one is the “right” con-
struction, or put in terms of observables: how do we identify the observables in
the larger algebra obtained in this way ?

In answering the first question, the notion of Hadamard states comes up: Using a refor-
mulation of the Hadamard condition in the language of wave-front sets of distributions
[Rad96b], which makes the tools of microlocal analysis available [Hör03], it was noted
that the same construction as in Minkowski spacetime, namely defining normal ordering
recursively as (φω(f) := πω(φ(f)) the representor of φ(f) in the GNS-representation of
A(M, g))

:φω(f):ω=φω(f)
:φω(f1) . . . φω(fn+1):ω= :φω(f1) · · ·φω(fn):ω φω(fn+1)

−
n+1∑
l=1

:φω(f1) · · ·φω(fl−1)φω(fl+1) · · ·φω(fn):ω W ω
2 (fl, fn+1)

and then restricting these operators (e.g. by restricting the vector valued distributions
:φω(f1) . . . φω(fn): Ψ on Mn, Ψ a vector from (a dense subset of) the common, dense
invariant domain of the φω(f)) to the “diagonal” by composition with the diagonal map
δ : M 3 x 7→ (x, . . . , x) ∈ Mn is well defined[BFK96, HW01]. As a result, one indeed
obtains an algebra W(M, g) ⊃ A(M, g) containing “Wick products” (for details see
below) and it turns out that the algebras constructed using different Hadamard states
ω, ω′ are isomorphic. Furthermore, states with a two-point function of Hadamard form
and smooth truncated n-point functions can be continued to W(M, g) [HR02], which
answers the first question rather completely.
The second question however remains, and as there are very many Hadamard states

[Ver94], leading to different candidates for Wick products, this is indeed a serious prob-
lem. In fact, on a more elementary level this problem was already encountered earlier
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in the definition of (the expectation values of) the stress-energy tensor in quantum field
theory on curved spacetime. There, a solution was achieved by Wald by transferring con-
cepts, known for classical fields in general relativity, into quantum field theory [Wal77].
The most important input was a notion of “local dependence” of the renormalization
prescription on the spacetime geometry (there called causality); this was then developed
into the concept of locally covariant quantum fields [HW01], [BFV03]. As only a small
part of this formalism will be used in the following, the concepts required will be intro-
duced in a rather concrete way; for the formulation emphasizing the conceptual aspects
see [BFV03]. In this paper, quantum field theory and quantum fields are described us-
ing concepts from category-theory and this has proven a very useful approach in other
investigations [Few07b, BR07].
First, note that the construction of A(M, g) works on every globally hyperbolic space-

time (M, g) and since on each A(M, g) there exist Hadamard states [Wal94], we also
have for each globally hyperbolic spacetime (M, g) an algebra W(M, g). Consider now
the case of a globally hyperbolic spacetime (N, g′) isometrically embedded into (M, g)
via the map ψ : N → M . ψ is further assumed to be orientation and time-orientation
preserving and causal in the sense that for x, x′ ∈ N all causal curves γ connecting
ψ(x) and ψ(x′) (in M) lie entirely in ψ(N). Using ψ−1, defined on the image of ψ, an
algebra homomorphism between the algebra A(N, g′) and A(M, g) is defined by setting
αψ(φ′(f ′)) := φ(f ′ ◦ ψ−1) for the generators, where f ′ ∈ C∞0 (N), φ′(f ′) ∈ A(N, g′).
Basically the same construction also works for the algebras W(M, g) [HW01]; for each
isometric, causal imbedding ψ : (N, g′) → (M, g) we get an algebra homomorphism
α̃ψ :W(N, g′)→W(M, g).
While the discussion so far has been on the level of algebras of observables, we now

want to get to individual observables. The first important point is that a quantum field
is seen as an object defined on all globally hyperbolic spacetimes, more precisely, for
each (M, g) one has a map Φ[M, g] : C∞0 →W(M, g). The notion of local covariance is
then formulated as the requirement

αψ(Φ[N, g′](f ′)) = Φ[M, g](f ′ ◦ ψ−1) .

If we consider as fields Φ[M, g](f) the generators φ(f) of the field algebra A(M, g) ⊂
W(M, g) themselves, they obviously are locally covariant quantum fields; in contrast
defining the Wick product as above by the normal ordering procedure : · :ω, using a
Hadamard state ω(M, g) for each globally hyperbolic spacetime (M, g), one does not
get a locally covariant quantum field [HW01]. Using in the normal-ordering procedure
instead of the two-point function of a state ω the Hadamard-parametrix Gn, one ob-
tains a version of the Wick product, denoted in the following by : φ1 . . . φk :SHP and
called SHP-Wick product, where φ1, . . . , φk are field operators or their derivatives,
which is a locally covariant field. At first, this seems to depend on the order n of the
Hadamard parametrix, but since Gn − Gn′ and its derivatives for n′ > n agree when
restricted to the diagonal if only n is chosen big enough (where the minimum value
of n permissible depends on the order of the derivative considered), this is in fact not
the case. Furthermore, though the :φ1 . . . φk :ω are not locally covariant fields, the dif-
ferences : φ1 . . . φk :SHP − :φ1 . . . φk :ω lie again in W(M, g) (for : φ2 :SHP we have e.g
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:φ2 :SHP − :φ2 :ω= [W ω
2 − Gn]x=x′ · 1 with [·]x=x′ denoting the restriction to the diago-

nal {(x, x) | x ∈ M} ⊂ M ×M , so the two field operators differ only by a multiple
of the identity), thus the algebras W(M, g) in fact contain these covariant SHP-Wick
products. The remaining question is now, how much freedom there is in the choice of
covariant Wick products. In [HW01] this question has been tackled by giving additional
requirements a Wick product should satisfy; it turns out that the general locally co-
variant Wick product of two field operators (only those are used in the following) may
differ from the SHP products by a (universal) function times the identity, where this
function is build out of local curvature-terms and parameters of the field-theory with
the right scaling behaviour under rescaling of metric, mass and curvature couplings. Fur-
thermore, a method to derive additional relations between covariant Wick products of
differentiated field-operators from perturbation theoretic principles has been suggested
in [HW05]; except for their Leibniz-rule, which is automatically satisfied for the SHP
Wick products, this scheme will however not be applied here.
As an upshot of the construction just sketched, on each globally hyperbolic spacetime

we get Wick products : φ1[M, g] . . . φk[M, g] :SHP and these Wick products are related
with each other; :φ1[M, g] . . . φk[M, g]:SHP and :φ1[N, g′] . . . φk[N, g′]:SHP are “the same”
observable on different spacetimes (M, g) and (N, g′) in the sense that they both satisfy
the requirements characterizing a Wick product and if (N, g′) is isometric to a part of
(M, g) they are related by the local covariance equation for this embedding. This concept
of identifying observables on different spacetimes will be crucial later on in the definition
of local thermal equilibrium.
Concerning the practical, calculational side of the Wick products we will need formulas

for the expectation values of the SHP-product of two operators in Hadamard states;
just like in Minkowski spacetime, where the Wick product even exists at a point as a
quadratic form, the expectation value of the SHP-products in a Hadamard state ω is a
regular distribution (this can be seen directly from the definition of Hadamard states
given above) and so can be restricted to points. The value of the resulting function at a
point x ∈M will be denoted by ω(:φ1φ2 :SHP (x)). For field operators φ1 = ∇µ1 . . .∇µkφ,
φ2 = ∇ν1 . . .∇νlφ, this expectation value can be calculated as

ω(:φ1φ2 :SHP (x)) =
[
∇xµ1 . . .∇xµ1∇x′ν1 . . .∇x′νl (W ω

2 − Gn) (x, x′)
]
x=x′ , (2.1.5)

where n ≥ k+ l and the notation for the restriction is explained below. The concrete cal-
culations can be simplified a bit by noting that the antisymmetric part of the Hadamard
parametrix actually agrees with i

2E up to Ck-terms that vanish upon restriction to the
diagonal (and this is again also true for the derivatives if k is chosen big enough). This
is basically due to the fact that the antisymmetric parts of the distribution limε→0

1
σε

and limε→0 σ
j log σε agree with the (difference of the “advanced” and “retarded”) Riesz-

distributions used in the construction of the local fundamental solution to Pm,ξ [BGP07].
The distribution i

2E in turn is the common, antisymmetric part of all two-point func-
tions W ω

2 , so defining Gsk as the symmetric part of Gk and GSHP
k as this distribution plus

the common antisymmetric part of all states

GSHP
k (f1, f2) = Gsk(f1, f2) + i

2
E (f1, f2) ,
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the term W ω
2 −Gk on the right hand side of (2.1.5) can be replaced by W SHP

ω,k defined by

W SHP
ω,k (f1, f2) = W ω

2 (f1, f2)− GSHP
k (f1, f2) ,

which is symmetric (and not just symmetric up to remainder terms vanishing on the
diagonal) and is the expression used in [FS07].
Alternatively, introducing the symmetric part of the two-point function as

W ω,s
2 (f1, f2) = 1

2 (W ω
2 (f1, f2) + W ω

2 (f2, f1)) ,

this can also be written as W ω,s
2 − Gsk. This will be the definition used in practical

calculations, since it requires only the symmetric parts of the distributions involved.
Finally in (2.1.5) and also some of the discussion so far, restrictions to the diagonal

appeared; these and also partial restrictions will again show up in the following, so a few
remarks on them are in order:
Functions M ×M 3 (x, x′) 7→ f(x, x′) ∈ C can be considered as functions on M only by
either fixing their first or second argument. For functions with one argument fixed, one
can then form tensor fields by taking covariant derivatives, raise and lower indices etc.;
in index notation we will denote tensor fields obtained in such a way using unprimed
indices if the second argument of f was fixed and primed arguments if the first argument
was fixed. Allowing the fixed argument to take all values in M (i.e. letting it vary as a
parameter over M), we end up with functions f̃ : M ×M → T rs (M), which are sections
of the tensor-bundle T rs (M) over M with respect to the first or second argument, i.e.
with π : T rs (M)→M the projection of the bundle to its basis and π1, π2 the projections
of M × M onto the first or second factor satisfy π ◦ f̃ = π1 or π ◦ f̃ = π2. As a(r
s

)
-tensor field, f̃ is a multilinear map of r covector and s vector fields into a smooth

function on M , and inserting such fields we obtain a function on M ×M again, which
depends linearly on all the (co-)vector fields inserted. Now fixing the other argument
(for concreteness assume we fix the first to x̃), we can again form tensor fields by taking
covariant derivatives, raising indices, etc. and obtain a

(r′
s′
)
-tensor field, i.e. a multilinear

map of r′-covector and s′-vector fields into a smooth map. If we consider this map at x̃,
it depends linearly on the values of all the (co-)vector fields at x̃ inserted in the previous
step and also linearly on the values of the r′+ s′ (co-)vector fields we can insert into the
multilinear map just obtained, so it is in fact a

(r+r′
s+s′

)
-tensor at x̃. Since we can do this

for all x̃ ∈ M , we obtain in this way a a multilinear map sending r + r′ co-vector and
s+s′ vector fields into a smooth function, i.e. a

(r+r′
s+s′

)
-tensor field. When expressed using

indices with respect to bases that respect the product structure (e.g. coordinate-bases
of product-coordinates), this just means that we have expressions involving two sets of
indices (primed and unprimed); all tensor operations proceed as usual, but may only
involve one type of indices and the order of operations involving primed and unprimed
indices does not matter; finally when restricting to the diagonal {(x, x) | x ∈ M} the
distinction between indices of different type is dropped.
To denote this last step of restriction to the diagonal we use brackets, so e.g

[∇a∇b′f ]x=x′
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is supposed to mean the
(0
2
)
tensor field mapping two vector fields X,Y in a bilinear way

into a smooth function, obtained by first fixing the second argument of f and calculating
for the resulting map fx′ the

(0
1
)
tensor field (dfx′) = ∇µfx′dxµ, then inserting X and

calculating for the map f̃X : x′ 7→ dfx′(X) the
(0
1
)
tensor field df̃X = ∇ν′ f̃Xdxν′ that

finally maps Y to df̃X(Y ).
For the Robertson-Walker spacetimes introduced in the next section we have global

coordinates (η,x), x ∈ R3; functions f in two arguments at (x, x′) ∈ M ×M we will
denote as f(η,x, η′,x′) and their restriction to {(η,x, η′,x′) | η = η′} ⊂ M ×M , the
“partial diagonal”, we will denote as [f ]η=η′ .

2.2 Robertson Walker spacetimes
2.2.1 Some geometric properties
The class of spacetimes considered in the part on existence of LTE states will be the
Robertson Walker spacetimes and among them more specifically the ones with flat spatial
section. While their relevance in cosmology was briefly discussed in the introduction, here
we will come to the more technical aspects and first discuss some geometric properties
needed in the following (mainly some consequences of their symmetry and relations to
Minkowski spacetime, which are due to the fact that these spacetimes are conformally
flat).
Mathematically, (spatially flat) Robertson Walker spacetimes are given as warped

products I ×a R3[O’N83] of an open interval I =]ti, tf [ (ti = −∞ and tf = +∞ are
permissible) and R3 with a positive warping function a : I → R+. This means that
M = I × R3, with the metric tensor g given in the coordinate bases of the standard
coordinates (t, x, y, z) as

g = diag(1,−a2,−a2,−a2)

(I × R3 is an open subset of R4, so the identity map provides a global, canonical chart
used here and in the following)4. In these coordinates, the curves τ 7→ (τ, x0, y0, z0)
are worldlines of non-accelerated observers for all constant (x0, y0, z0) ∈ R3; they are
furthermore orthogonal to the surfaces of constant t which are Cauchy surfaces [BEE96,
thm 3.69] and in models filled with an ideal fluid they are the flowlines of this fluid. One
can therefore interpret t as some “global cosmological time” on which all the observers
co-moving with the matter background can agree. Even though this chart is in this
sense singled out by physical requirements, we will use an alternative time coordinate,
specified by

η(t) =
∫ t

t0

dt′

a(t′)
,

where t0 ∈ I is some fixed time. Since this is monotonically increasing, ∂η is still future
pointing, we still have a global chart now with range Î ×R3, Î =]ηi, ηf [ and the surfaces
of constant η are still Cauchy-surfaces (actually the same surfaces as before, but labeled

4M as a subset of R4 is oriented by taking the induced orientation; it is time oriented by taking ∂t to
be future pointing.
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in a different way). Introducing the function C by the relation C(η(t)) = a2(t), we can
express the metric tensor with respect to this new coordinates (η, x, y, z) =: (η,x) as
g = C(η) diag(1,−1,−1,−1). Since this is just a multiple of the Minkowski metric, the
spacetime considered is seen to be conformally flat. Because it is this choice of time
coordinate which makes the conformal flatness of the spacetime apparent, we will call
η “conformal time”; using η as time coordinate, this property is most easily exploited,
which is the reason why we will do so exclusively when dealing with Robertson Walker
spacetimes in the following. The (spatially-flat) Robertson Walker spacetime, uniquely
specified by the interval I and the warping function a respectively, using conformal time,
the interval Î and the function C, we will denote from now on as MRW(Î , C)
Denote by E(3) = R3 o SO(3) the symmetry group of 3-dimensional euclidean space.

Due to the warped-product structure of MRW(Î , C) it is also the symmetry group for
every spatial slice Sη0 = {(η,x) | η = η0, x ∈ R3}. Denote with ρRW(g) the group action
on MRW(Î , C) defined by ρRW(g)(η,x) := (η, gx). For functions on (MRW(Î , C))n a
natural symmetry requirement is symmetry with respect to a simultaneous transforma-
tion of all its arguments with the same element from the symmetry group by this group
action. We will repeatedly encounter functions and distributions of two argument with
this symmetry, which however are only defined on subsets of (MRW(Î , C))2, so we will
first introduce domains compatible with this symmetry and then describe the functions
and distributions with this symmetry.
Let the open set D ⊂ (MRW(Î , C))2 be such that all its spatial slices are invariant

under E(3), i.e.

∀g ∈ E(3)∀(η,x, η′,x′) ∈ N : (η, gx, η′, gx′) ∈ D .

The following lemma introduces notation and collects two well known representation
statements for functions on an invariant domain and distributions on R3, invariant under
the action ρRW(·), respectively of E(3) on R3.
Lemma 2.4. Let f : D → C be a function on an invariant domain D ⊂ (MRW(Î , C))2
satisfying f(η, gx, η′, gx′) for all g ∈ E(3) and (η,x, η′,x′) ∈ D. Then f can be written
as

f(η,x, η′,x′) = f̃(η, η′,
∥∥x− x′

∥∥) , (2.2.1)
where f̃ : Dred ⊂ Î × Î ×R→ C is an even function of its last argument, and conversely
every smooth function f̃ : Dred ⊂ Î × Î × R → C which is even w.r.t. its last argument
determines an f with the above symmetry properties by (2.2.1) and smoothness of f is
equivalent to smoothness of f̃ .
Furthermore, if we define for f ∈ C∞0 (R3) and g ∈ E(3) the functions fg by

fg(x) := f(gx) ,

then a distribution T on such test-functions which satisfies T (fg, f ′g) = T (f, f ′) for all
g ∈ E(3) can be written as

T (f, f ′) = T̃ (f ∗ f ′) , with T̃ ∈ C∞0 (R3)′

(f ∗ f ′)(x) :=
∫

R3
f(y)f ′(x− y)dy (2.2.2)
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and the distribution T̃ is radially symmetric in the sense that for

〈f〉S2(x) := 1
4π2

∫
S2
f(‖x‖ ζ)dω(ζ) ,

S2 the unit sphere and ω the induced measure on it, we have T̃ (〈f〉S2) = T̃ (f), so T̃ is
already determined on radially symmetric test-functions. Conversely, such a distribution
T̃ defines via (2.2.2) a distribution satisfying T (fg, f ′g) = T (f, f ′) for all g ∈ E(3).

Proof. For each fixed η, η′ the function (x,x′) 7→ f(η,x, η′,x′) is an E(3) invariant
function on (a subset of) R3 and using that such functions can be written as smooth,
symmetric functions of ‖x− x′‖ we get the claimed representation.
The statement for the distributions can be combined from the statements on transla-

tionally [RS75] and rotationally invariant [Zie80] distributions. The inverse direction is
clear.

We will denote the set of such invariant functions defined on an invariant domain by
C∞hi (D), denote the function associated to f ∈ C∞hi (D) by (2.2.1) as f̃ and refer to it as
the “symmetry-reduced function”; similarly, we will refer to the distribution T̃ associated
to an E(3)-invariant distribution T by (2.2.2) as the “symmetry-reduced distribution”.
Because the spacetime is conformally flat and (η,x) are global conformal coordinates,

the set V` ⊂ (MRW(Î , C))2 of points which are lightlike related is contained in

V := {(η,x, η′,x′) ∈ (MRW(Î , C))2 | (η − η′)2 −
∥∥x− x′

∥∥2 = 0}

(locally, e.g. for N a geodesically convex neighbourhood V ∩ (N ×N) = V` ∩ (N ×N)
holds). Introducing the function ρ : (MRW(Î , C))2 3 (η,x, η′,x′) 7→ ‖x− x′‖2−(η−η′)2,
we have V = ρ−1(0) and the following lemma for functions f ∈ C∞hi (D) vanishing for
points on V :

Lemma 2.5. Let f ∈ C∞hi (D) with f |D∩V = 0. Then the function

f

ρ
: D \ (V ∩D) 3 (η,x, η′,x′) 7→ f(η,x, η′,x)

‖x− x′‖2 − (η − η′)2

can be uniquely extended to a smooth function on D.

Proof. By the above, the statement is equivalent to the smooth extendability of

h̃ : Dred \ {(η, η′, r) ∈ Dred | (η − η′)2 − r2 = 0} 3 (η, η′, r) 7→ f̃(η, η′, r)
ρ̃(η, η′, r)

to Dred and introducing η, ξ, ζ byηξ
ζ

 =

 η+η′
2

r + (η − η′)
r − (η − η′)

 =: A

ηη′
r
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2.2 Robertson Walker spacetimes

and setting ˜̃ρ := ρ̃ ◦ A−1 ⇒ ˜̃ρ(η, ξ, ζ) = ξζ, this is also equivalent to the extendability
statement for ˜̃h := h̃ ◦ A−1 from A(Dred) \ (˜̃ρ−1(0) ∩ A(Dred)) to A(Dred). Setting
˜̃f := f̃ ◦A−1 we have ˜̃f(η, ξ, ζ) = 0 for ξ = 0 or ζ = 0. Now as is easily checked

(η, ξ, ζ) 7→



˜̃f(η,ξ,ζ)
ξζ for ξ 6= 0 and ζ 6= 0

∂ξ
˜̃f((η),0,ζ)
ζ for ξ = 0, ζ 6= 0

∂ζ
˜̃f((η),ξ,0)
ξ for ζ = 0, ξ 6= 0

∂ξ∂ζ
˜̃f(η, 0, 0) for ξ = ζ = 0

provides the required smooth extension of ˜̃h (uniqueness follows from the required con-
tinuity of the extension).

We first want to apply this to the signed squared geodesic separation σ. First σ is
only defined on sets N ×N , where N is a geodesically convex set, but using translations
from E(3) it can be consistently extended to an E(3) invariant domain D by symmetry,
since geodesics get mapped into geodesics by spacetime symmetries. As argued above,
σ vanishes on D ∩ V ; applying lemma 2.5 the function q := σ

ρ : D \ (D ∩ V ) → R can
be smoothly extended to D, so on D the squared geodesic distance can be written as
σ = qρ.
Furthermore, the property [

∂µν′σ(x, x′)
]
x′=x = 2gµν

for σ [Fri75] implies[
∂rrσ̃(η, η′, r)

]
η′=η,r=0 =

[(
2q̃(η, η′, r) + 4r∂r q̃(η, η′, r) + ρ(η, η′, r)∂rr q̃(η, η′, r)

)]
η=η′,r=0

= 2C(η)
⇒ q̃(η, η, 0) = C(η) > 0 (2.2.3)

and by the smoothness of q this implies that q is positive in a whole neighbourhood of
x = x′. Summing up, one can write σ as

σ = ρq , (2.2.4)

where q is positive in a neighbourhood ND of x = x′.
Introducing

o
∇µ by

o
∇0 = ∂η,

o
∇1 = ∂x,

o
∇2 = ∂y,

o
∇3 = ∂z and denoting the metric

tensor of Minkowski spacetime for the moment by ε = diag(1,−1,−1,−1), we get from
the equation

gab∇aσ∇bσ = 1
C
εµν

o
∇µ(ρq)

o
∇ν(ρq) = −4ρq = −4σ

for σ the equation

2qεµν
o
∇µρ

o
∇νq + 4q(C − q) + ρεµν(

o
∇µq)

o
∇νq = 0 (2.2.5)
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for q, where the initial condition (as already derived above) is [q](η,x)=x=x′ = C(η).
Using this, one can determine the small distance asymptotics of q by inserting (for the
symmetry reduced q̃)

q̃(η, η′, r) = C(η′) + q10(η − η′) + q20(η − η′)2 + q02r
2 + q30(η − η′)3 + q12(η − η′)r2 + . . .

into (2.2.5); equating equal powers, q̃ up to fourth order is obtained as

q̃(η, η′, ρ) =C(η′) + C ′(η′)
2

(η − η′) + C ′′(η′)
6

(η − η′)2

+ C ′′′(η′)
24

(η − η′)3 + C ′′′′(η′)
120

(η − η′)4

+
{(
C ′(η′)

)2 +
[
C ′(η′)C ′′(η′)− (C ′(η′))3

2C(η′)

]
(η − η′)

+
[(C ′(η′))4

4C2(η′)
− 2

3
(C ′(η′))2C ′′(η′)

C(η′)
+ 4

15
(
C ′′(η′)

)2
+ 3

10
C ′′′(η′)C ′(η′)

](
η − η′

)2} ρ

48C(η′)

+
{
C ′′(η′)

5
− (C ′(η′))2

6C(η′)

}
(C ′(η′))2

192C2(η′)
ρ2 + . . . (2.2.6)

2.2.2 Regularization of Gk on Robertson Walker-spacetimes

To calculate expectation values of Wick squares, the restriction of W SHP
ω,k to the diagonal

η′ = η, x = x′ (the coincidence limit) will be the object of interest; the strategy pursued
here is to perform this restriction in two steps, making use of the fact that W ω,s

2 and
Gsk can be restricted individually as distributions to the “partial diagonal” η = η. The
obtained difference of the distributions [Gsk]η=η′ and [W ω,s

2 ]η=η′ is then rewritten before
the second part of the coincidence limit (setting x = x′) is performed. We thus need
expressions for [Gsk]η=η′ . Furthermore, we also need the coincidence limits of the η and
η′-derivatives (up to second order) of W SHP

ω,k and as the derivatives on the terms in W SHP
ω,k

obviously have to be performed before the restriction to the partial diagonal, we also
need expressions for those.
It will later turn out, that besides being the obvious terms appearing in the calculation

of the expectation values that enter the LTE-condition, they actually are sufficient to
calculate the coincidence limit for arbitrary derivatives of W SHP

ω,k , since higher η or η′
derivatives can be reduced to spatial derivatives using the equation of motion.
By definition, Gsk is built from the symmetric parts

[
1
σ+

]s
, [log(σ+)]s of the distri-

butions limε→0
1
σε

and limε→0 log(σε). We already know from section 2.2.1 that σ can
be written as qρ where ρ is (except for a renaming of the variables) the Minkowskian
signed squared separation. Lemma 2.7 shows, that the distributions q̃

[
1
σ̃+

]s
is identical
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2.2 Robertson Walker spacetimes

to the corresponding distribution
[

1
σ̃o+

]s
on Minkowski spacetime, so this relation be-

tween Robertson Walker spacetime in conformal coordinates and Minkowski spacetime
also holds for the distributional expressions. Furthermore, it gives explicit expressions
for the restrictions of the distribution and its first and second η-derivative to the partial
diagonal; lemma 2.8 does the same for [log(σ̃+)]s.
We first need a convergence statement, before we come the proof of these two lemmas:

Lemma 2.6. Let ρ : R × R+ 3 (∆η, r) 7→ r2 − (∆η)2 and q : R × R+ → R be bounded
from below by 1/Qmax > 0. Then (r,∆η) 7→ log

((
ρ(r,∆η) + ε2

q(r,∆η)

)2
+ 4ε2 (∆η)2

q2(r,∆η)

)
converges in L1

loc to (r,∆η) 7→ log(ρ2(∆η, r)).

Proof. See appendix.

With the help of this lemma, we can now reduce the problem to the Minkowskian case
by basically the same strategy as Kay and Wald [KW91, Appendix B] and then work
out the restrictions; the details are contained in the following:

Lemma 2.7. Let the distribution
[

1
σ+

]s
: C∞0 (Î × Î × R3)→ C be given by

[ 1
σ̃+

]s
(f) = lim

ε→0

∫
Î

∫
Î

∫
R3

1
2q̃(η, η′, ‖x‖)

[ 1
x2 − (η − η′)2 + 2iε(η−η′)

q̃(η,η′,‖x‖) + ε2

q̃(η,η′,‖x‖)

+ 1
x2 − (η − η′)2 + 2iε(η′−η)

q̃(η,η′,‖x‖) + ε2

q̃(η,η′,‖x‖)

]
. . .× f(η, η′,x) dxC2(η)dη C2(η′)dη′ .

(2.2.7)

Then
[

1
σ̃+

]s
can be written as

[ 1
σ̃+

]s
=
∫
Î

∫
Î
σ̃−1
η−η′

(
f(η, η′, ·)
q̃(η, η′, ‖·‖)

)
C2(η)dη C2(η′)dη′ , (2.2.8)

where the function ∆η 7→ σ̃−1
∆η(h) is (for fixed h ∈ C∞0 (R3)) twice continuously differen-

tiable with

σ̃−1
∆η(h)|∆η=0 = lim

ε→0

∫
R3

h(x)
x2 + ε2

dx =: 1
r2+

(h) (2.2.9)

∂∆η
(
σ̃−1

∆η(h)
)
|∆η=0 = 0 (2.2.10)

∂∆η∆η
(
σ̃−1

∆η(h)
)
|∆η=0 = lim

ε→0

∫
R3

∆h(x)
x2 + ε2

dx =: 2
r4+

(h) . (2.2.11)

Proof. Due to the rotational symmetry of R3 ∈ x 7→ 1
x2−(η−η′)2± 2iε(η−η′)

q̃(η,η′,‖x‖)+
ε2

q̃(η,η′,‖x‖)

,

one can restrict to test-functions f which are given as f(η, η′,x) = f̃(η, η′, ‖x‖), where
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the function f̃ : Î × Î × R+
0 → C is smooth, has bounded supported and satisfies[

∂2k+1
r f̃(η, η′, r)

]
r=0

= 0 for all k ∈ N0.

Introduce now the functions

ps(η, η′, r) =
2rq̃(η, η′, r)− ε2 ∂r q̃(η,η

′,r)
q̃(η,η′,r)(

2q̃(η, η′, r)− ε2 ∂r q̃(η,η
′,r)

rq̃(η,η′,r)

)2
+ 4ε2(η − η′)2

(
∂r q̃(η,η′,r)
rq̃(η,η′,r)

)2

pa(η, η′, r) =
2(η − η′)∂r q̃(η,η

′,r)
q̃(η,η′,r)(

2q̃(η, η′, r)− ε2 ∂r q̃(η,η
′,r)

rq̃(η,η′,r)

)2
+ 4ε2(η − η′)2

(
∂r q̃(η,η′,r)
rq̃(η,η′,r)

)2

p±(η, η′, r) = r

2q̃(η, η′, r)∓ 2iε(η − η′)∂r q̃(η,η
′,r)

rq̃(η,η′,r) − ε2
∂r q̃(η,η′,r)
rq̃(η,η′,r)

= ps(η, η′, r)± iεpa(η, η′, r) .

Again due to the (spatial) symmetry of the spacetimes considered, limr→0 ∂rq = 0, and
(∆η,∆η′, r) 7→ ∂r q̃(η,η′,r)

rq̃(η,η′,r) is a smooth function of η, η′, r in neighbourhoods of r = 0,
η = η′. This shows that on such neighbourhoods ps, pa and p± are well defined and
can (for ε small enough) be bounded by an ε-independent constant. Moreover, this also
holds for their r-derivative and the functions converge (together with their r-derivatives)
uniformly on such sets to the expressions obtained by setting ε = 0.

Going over to the variables η = η+η′
2 and ∆η = η − η′, introducing the intervals

∆I(η) := {∆η |
∣∣∣η − ηi+ηf

2

∣∣∣+|∆η| ≤ ηf−ηi
2 } and denoting for functions f : Î×Î×R+ → C

by fη the function fη : (∆η, r) 7→ f(η + ∆η, η −∆η, r), (2.2.7) can be written as

[ 1
σ̃+

]s
(f) = lim

ε→0

∫
Î

∫
∆I(η)

∫
R+

1
2

[2r − 2iε∆η ∂r q̃η(∆η,r)
q̃2
η
(∆η,r) − ε

2 ∂r q̃η(∆η,r)
q̃2
η
(∆η,r)

r2 − (∆η)2 + 2iε ∆η
q̃η(∆η,r)

+ ε2

q̃η(∆η,r)
p+
η (∆η, r)f̃η(∆η, r)

+
2r + 2iε∆η ∂r q̃η(∆η,r)

q̃2
η
(∆η,r) − ε

2 ∂r q̃η(∆η,r)
q̃2
η
(∆η,r)

r2 − (∆η)2 − 2iε ∆η
q̃η(∆η,r)

+ ε2

q̃η(∆η,r)
p−η (∆η, r)f̃η(∆η, r)

]
drd∆ηdη

= lim
ε→0

∫
Î

∫
∆I(η)

∫
R+
−1

2

[
log

(
ρ+ 2i ε∆η

q̃η(∆η,r)
+ ε2

q̃η(∆η,r)

)
∂r(p+

η (∆η, r)f̃η(∆η, r))

+ log
(
ρ− 2i ε∆η

q̃η(∆η,r)
+ ε2

q̃η(∆η,r)

)
∂r(p−η (∆η, r)f̃η(∆η, r))

]
drd∆ηdη ,

where a partial integration with respect to r was performed. Since the integrand in
(2.2.7) is symmetric with respect of exchange of η and η′ except for the test function
f and the integration is with respect to η and η′, wlog f can also be assumed to be
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symmetric with respect to exchange of η and η′. Using this,
[

1
σ̃+

]s
is given by

[ 1
σ̃+

]s
(f) = lim

ε→0
−1

2

∫
Î

∫
∆I(η)

∫
R+

log
((
ρ+ ε2

q̃η(∆η,r)

)2
+ 4(∆η)2

q2(∆η,r)

)
. . .× ∂r

(
psη(∆η, r)f̃η(∆η, r)

)
drd∆ηdη

+ lim
ε→0

ε

∫
Î

∫
∆I(η)

∫
R+

arg
(
ρ+ 2i ε∆η

q̃η(∆η,r)
+ ε2

q̃η(∆η,r)

)
. . .× ∂r

(
paη(∆η, r)f̃η(∆η, r)

)
drd∆ηdη . (2.2.12)

Since the argument function arg is bounded and the same holds, with bounds indepen-
dent of η, for ∂r(paηf̃η), the second summand goes to zero.
The first summand is an integral over a bounded set of a product of two functions

which converge (by the preceding lemma and the discussion after the introduction of
pa and ps; the appearance of the additional variable in q̃ is not of significance, since in
the proof of the lemma only the boundedness of q̃ from below was needed, which holds
uniform wrt. η) in L1

loc respectively uniformly to integrable respectively bounded limit
functions. The limit can therefore be performed inside the integral, establishing (2.2.8)
with

σ̃−1
η−η′(f(η, η′, ·)) = −1

4

∫
R+

log
(
(r2 − (η − η′)2)2

)
∂r
(
rf̃(η, η′, r)

)
dr . (2.2.13)

Starting from this equation, by repeated partial integration and application of the the-
orem on differentiable parameter-dependence for (Lebesgue) integrals the statements
concerning differentiability and restrictions to the partial diagonal are derived rather
straightforwardly: Integrating (2.2.13) twice with respect to r we get for a radially
symmetric h ∈ C∞0 (R3):

σ̃−1
τ (h̃) =− 1

2

∫
R+

[
(r + τ)2

2
log |r + τ |+ (r − τ)2

2
log |r − τ | − 3

2
r2 − τ2 log |τ |

]
︸ ︷︷ ︸

=:J1(τ,r)

. . .× ∂rrr(rh̃(r))dr .

Differentiating with respect to τ we get

∂τJ1(τ, r) = (r + τ) log |r + τ | − (r − τ) log |r − τ | − 2τ log |τ | ,

and since x 7→ x log |x| is bounded in modulus on any compact interval we can take
multiples of characteristic functions as majorants for the integrand which implies that
τ 7→ σ̃−1

τ (h) is continuously differentiable with derivative given by

∂τ σ̃
−1
τ (h) = −1

2

∫
R+

[(r + τ) log |r + τ | − (r − τ) log |r − τ | − 2τ log |τ |] ∂rrr(rh̃(r))dr ,
(2.2.14)
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but setting τ = 0 this vanishes showing (2.2.10). Note that in (2.2.14) the term τ log |τ |
can be dropped, since the integral over r 7→ ∂rrr(rh̃(r)) from zero to infinity is just
−
[
∂rr(rh̃(r))

]
r=0

, but since h̃ is symmetric this vanishes.
Since we now know that τ 7→ σ̃−1

τ (h) is continuous, setting τ = 0 in the equation
(2.2.13) for σ̃−1

τ (h) we get

σ̃−1
0 (h) =− 1

2

∫
R+

log(r2)∂r(rh̃(r))dr = −1
2

lim
ε→0

∫
R+

log(r2 + ε2)∂r(rh̃(r))dr

= lim
ε→0

∫
R+

r2h̃(r)
r2 + ε2

dr

which is the claim (2.2.9). To calculate the second derivative, we again perform a partial
integration, this time starting from (2.2.14) (without the τ log |τ |-term) and get

∂τ σ̃
−1
τ (h) = 1

2

∫
R+

[
(r + τ)2

2
log |r + τ | − (r − τ)2

2
log |r − τ | − rτ

]
∂rrrr(rh̃(r))dr .

Differentiating wrt. τ under the integral leads to

∂ττ σ̃
−1
τ (h) = 1

2

∫
R+

[(r + τ) log |r + τ |+ (r − τ) log |r − τ |] ∂rrrr(rh̃(r))dr ,

which is again permissible by the same argument as above, showing that τ 7→ σ̃−1
τ (h) is

at least C2. Setting τ = 0, performing two partial integrations in the opposite direction
(inserting the ε2 term by majorized convergence before the second) and using the relation
∆h = ∂rrh̃ + 2

r∂rh̃ for the application of the Laplace operator to radially symmetric h,
one arrives at (2.2.11). .

A corresponding result holds for the distributions [log(σ̃+)]s:

Lemma 2.8. Let the distribution [log σ̃+]s : C∞0 (Î × Î × R3)→ C be given by

[log(σ̃+)]s (f) = lim
ε→0

∫
Î

∫
Î

∫
R3

(
log(q̃(η, η′, ‖x‖))

+ 1
2

[
log

(
x2 − (η − η′)2 + 2iε(η−η′)

q̃(η,η′,‖x‖) + ε2

q̃(η,η′,‖x‖)

)
+ log

(
x2 − (η − η′)2 − 2iε(η−η′)

q̃(η,η′,‖x‖) + ε2

q̃(η,η′,‖x‖)

)])
f(η, η′,x) dxdηdη′ .

Then [log(σ̃+)]s can be written as

[log(σ̃+)]s =
∫
Î

∫
Î

∫
R3

log
(
q̃(η, η′, ‖x‖

)
f(η, η′,x)dηdη′dx+

∫
Î

∫
Î
l̃oη−η′

(
f(η, η′, ·)

)
dηdη′ ,
(2.2.15)
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where the function ∆η 7→ l̃o∆η(h) is (for fixed h ∈ C∞0 (R3)) twice continuously differen-
tiable with

l̃o∆η(h)|∆η=0 =
∫

R3
log

(
x2
)
h(x) dx (2.2.16)

∂∆η
(
l̃o∆η(h)

)
|∆η=0 = 0 (2.2.17)

∂∆η∆η
(
l̃o∆η(h)

)
|∆η=0 = −2 lim

ε→0

∫
R3

h(x)
x2 + ε2

dx (2.2.18)

Proof. Again picking wlog. radially symmetric functions test functions f symmetric
with respect to interchange of η and η′, we get for log[(σ̃+)]s the expression

[log(σ̃+)]s (f) =
∫
Î

∫
Î

∫
R3

log(q̃(η, η′, ‖x‖))f(η, η′,x)dxdηdη′

+ lim
ε→0

1
2

∫
Î

∫
∆I(η)

∫
R+

log
((
ρ+ ε2

q̃η(∆η,r)

)2
+ 4(∆η)2

q2(∆η,r)

)
f̃η(∆η, r)r2drd∆ηdη

− lim
ε→0

ε

∫
Î

∫
∆I(η)

∫
R+

arg
(
ρ+ 2i ε∆η

q̃η(∆η,r)
+ ε2

q̃η(∆η,r)

)
f̃η(∆η, r)r2drd∆ηdη .

(2.2.19)

By the same arguments as in the last lemma, the limit involving the arg-function vanishes
and the other limit can be performed inside the integral, establishing (2.2.15) with

l̃oη−η′(f(η, η′, ·)) = + 1
4

∫
R+

log
((
r2 − (η − η′)2

)2
)
r2f̃(η, η′, r)r2dr .

But since this expression is completely analogous to the one obtained for σ̃−1
η−η′ in the

proof of the preceding lemma, the statements about differentiability and restrictions can
also be established along the same lines as there (even requiring less partial integrations).

2.2.3 Quasifree homogeneous and isotropic states

After having clarified the regularization aspects of the Hadamard-parametrix on Robert-
son Walker spacetimes to the extent required in the following, we next come to (quasifree)
states of the quantum field with maximal symmetry on them. One way to define such
states would be to require a two-point function which is invariant under a simultaneous
action of ρRW(g) on both its arguments. Lüders and Roberts [LR90], whose results we
use here, actually discuss the quantum field in terms of its field algebras defined on a
Cauchy surface; the requirement of homogeneity and isotropy then means that the two-
point function has to be invariant under replacements of the (pairs of) test-functions
(f, h), (f ′, h′) that enter the two-point function by (fg, hg), (f ′g, h′g) for all g ∈ E(3),
where the group-transformed test-functions fg, hg, etc. are defined as in lemma 2.4.
Under an additional continuity assumption on the group-action, they then show that
such quasifree homogeneous and isotropic states on Robertson Walker spacetimes are
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given by states with a two-point function of the form5

W ω
2 (f1, f2) =

∫
R3

(
(Êf1)(η0,p) ̂∂η0(Ef1)(η0,p)

)
S(p)

(
(̂Ef2)(η0,p)
̂∂η0(Ef2)(η0,p)

)
C(η0)dp

(2.2.20)

S(p) =
(

α(p) i
2 + γ(p)

− i
2 + γ(p) β(p)

)
,

where here an in the following p = ‖p‖ and for f ∈ C∞0 (Î × R3) we denote by f̂ the
Fourier-transform of f wrt. the “spatial variables”, i.e.

f̂(η,p) = 1
(2π)3/2

∫
R3
f(η,x)e−ipxdx ,

the expression on the rhs. of (2.2.20) is independent of η0 and the functions α, β > 0, γ
satisfy the relation

γ2 ≤ αβ − 1
4

(2.2.21)

and are polynomially bounded.
Inserting the expression (A.1.6) from the appendix for the commutator distribution

Ef into the two-point function one is left with

W ω
2 (f1, f2) = 1

(2π)3
∫

R3

∫
R3

∫
R3
wp,p′(f1, f2)ei(p−p′)xdp dp′ dx (2.2.22)

wp,p′(f1, f2) =
∫

R

∫
R

(
Gp(η0, η) ∂η0Gp′(η0, η)

)( α(p) i
2 + γ(p)

γ(p)− i
2 β(p)

)(
Gp′(η0, η

′)
∂η0Gp′(η0, η

′)

)

. . .× f̂1(η,p)f̂2(η′,p′)C2(η)dη C2(η′)dη′

where Gp is given in terms of the function Vp satisfying the ordinary differential equation

V ′′p +
[
p2 +Qm,ξ

]
Vp =0 (2.2.23)

Qm,ξ =(m2 + (ξ − 1/6)R)C

and the Wronski-determinant condition6

VpV
′
p − Vp

′
Vp = i (2.2.24)

as
Gp(η0, η) = i

Vp(η0)Vp(η)− Vp(η0)Vp(η)√
C(η0)C(η)

.

5This is a translation of their result into the setup used here using the commutator distribution as
discussed in [Wal94].

6Unfortunately, there seems to be disagreement which sign to pick in the Wronski-determinant condi-
tion. Since here the results from [LR90] are used, the sign chosen is also the same as theirs; note
that this differs from [BD84] and [JS02]. A different sign here leads to Vp and Vp being interchanged
in all the formulas involving two-point functions etc.
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2.2 Robertson Walker spacetimes

Consider now a family Vp of solutions to (2.2.23) satisfying (2.2.24) with polynomially
bounded initial value functions p 7→ Vp(η0) and p 7→ V ′p(η0). Defining for each p ≥ 0 the
function

Ep : η 7→ 1
2

∣∣∣V ′p(η)∣∣∣2 +
p2 +Q2

m,ξ(η)
2

|Vp(η)|2 ,

p 7→ Ep(η0) is again polynomially bounded. For a compact interval I0 := [η1, η2] we
furthermore have for each p and η̃ ∈ I0

E′p(η̃) = Q′m,ξ(η̃)
2 |Vp(η̃)|2

⇒ | Ep(η̃)| ≤
∣∣∣∣Ep(η0) +

∫ η̃

η0

Q′m,ξ(η)
2 |Vp(η)|2 dη

∣∣∣∣ ≤ |Ep(η0)|+ |η̃−η0|
2

∥∥∥Q′m,ξ |Vp|2∥∥∥∞
with

∥∥∥Q′m,ξ |Vp|2∥∥∥∞ := sup
η̃∈I0

∣∣∣Q′m,ξ(η̃) |Vp(η̃|2∣∣∣ .
For η̃ ∈ I0 we have |p

2+Qm,ξ(η̃)|
2 |Vp(η̃)|2 ≤ |Ep(η̃)| and taking the supremum over I0, we

get (∥∥p2 +Qm,ξ
∥∥
∞

2
−
∣∣η′ − η0

∣∣ ∥∥∥Q′m,ξ∥∥∥∞
)
‖Vp‖∞ ≤ |Ep(η0)| ,

which however implies that p 7→ ‖Vp‖∞ is polynomially bounded. This in turn implies
the polynomial boundedness of p 7→ ‖Ep‖∞ and because of

∣∣∣V ′p(η̃)∣∣∣2 ≤ 2 |Ep(η̃)| we

get that also p 7→
∥∥∥V ′p∥∥∥∞ is polynomially bounded and therefore wp,p′(f1, f2) is rapidly

decaying in p and p′. We can then switch the order of integration in (2.2.22), integrate
first over x and then p′ and are left with

W ω
2 (f1, f2) =

∫
R3
wp′,p′(f1, f2)dp′ .
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2 Technical background

Inserting the definition of Gp into the integrand of wp,p(f1, f2) we get

(
Gp(η0, η) ∂η0Gp(η0, η)

)( α(p) i
2 + γ(p)

γ(p)− i
2 β(p)

)(
Gp′(η0, η

′)
∂η0Gp(η0, η

′)

)
f̂1(η,p)f̂2(η′,p′)

=
{(

Vp(η0)√
C(η0)

∂η0
Vp(η0)√
C(η0)

)(
α(p) i

2 + γ(p)
γ(p)− i

2 β(p)

) Vp(η0)√
C(η0)

∂η0
Vp(η0)√
C(η0)


︸ ︷︷ ︸

A1(p)

Vp(η)Vp(η′)√
C(η)C(η′)

−
(
Vp(η0)√
C(η0)

∂η0
Vp(η0)√
C(η0)

)(
α(p) i

2 + γ(p)
γ(p)− i

2 β(p)

) Vp(η0)√
C(η0)

∂η0
Vp(η0)√
C(η0)


︸ ︷︷ ︸

A2(p)

Vp(η)Vp(η′)√
C(η)C(η′)

−
(
Vp(η0)√
C(η0)

∂η0
Vp(η0)√
C(η0)

)(
α(p) i

2 + γ(p)
γ(p)− i

2 β(p)

) Vp(η0)√
C(η0)

∂η0
Vp(η0)√
C(η0)


︸ ︷︷ ︸

A3(p)

Vp(η)Vp(η′)√
C(η)C(η′)

+
(
Vp(η0)√
C(η0)

∂η0
Vp(η0)√
C(η0)

)(
α(p) i

2 + γ(p)
γ(p)− i

2 β(p)

) Vp(η0)√
C(η0)

∂η0
Vp(η0)√
C(η0)


︸ ︷︷ ︸

A4(p)

Vp(η)Vp(η′)√
C(η)C(η′)

}

. . .× f̂1(η,p)f̂2(η′,p′) .

Except for the condition (2.2.24) and the polynomial boundedness of the initial values
(wrt p) the Vp have not yet been further specified. Take the initial values now as

Vp(η0) =

√
β(p)

2
1

4
√
α(p)β(p)− γ2(p)

(2.2.25)

√
C(η0)∂η0

Vp(η0)√
C(η0)

= 1√
2β(p)

(
i 4
√
α(p)β(p)− γ2(p)− γ(p)

4
√
α(p)β(p)− γ2(p)

)
(2.2.26)

By (2.2.21) we have αβ ≥ αβ − γ2 ≥ 1
4 which implies that 4

√
αβ − γ2 ≥ 1√

2 so the
function p 7→ |Vp(η0)| is finite and polynomially bounded and using 1√

β
≤ 2α it follows

that also p 7→ |Vp(η0)| is polynomially bounded. Furthermore, the condition (2.2.24) is
satisfied and for these initial values A2 and A3 vanish, whereas A1 and A4 are given by

A1 =
√
αβ − γ2 − 1

2
C(η0)

A4 =
√
αβ − γ2 + 1

2
C(η0)

,

32



2.2 Robertson Walker spacetimes

so the two-point function can be written as

W ω
2 (f1, f2) =

∫
R3

∫
Î

∫
Î

[(√
α(p)β(p)− γ2(p)− 1

2

)
Vp(η)Vp(η′)

+
(√

α(p)β(p)− γ2(p) + 1
2

)
Vp(η)Vp(η′)

]
. . .× f̂1(η,p)f̂2(η′,p)C3/2(η)dη C3/2(η′)dη′ dp (2.2.27)

Now for α,β,γ satisfying the above restrictions, we get Im (Vp(η0)) = 0, Re (Vp(η0)) > 0,

Im
(√

C(η0)∂η0
Vp(η0)√
C(η0)

)
= 1

2Vp(η0) and conversely for Vp(η0),
√
C(η0)∂η0

Vp(η0)√
C(η0)

satisfy-
ing these conditions, we can invert the equations (2.2.25) and (2.2.26) to obtain

β(p) =
V 2
p (η0)

C(η0)
∣∣∣∣∂η0 Vp(η0)√

C(η0)

∣∣∣∣2 α(p)

γ(p) =

 i

2C
∣∣∣∣∂η0 Vp(η0)√

C(η0)

∣∣∣∣2 −
Vp(η0)√

C(η0)∂η0
Vp(η0)√
C(η0)

α(p) .

Inserting this back into
√
αβ − γ2 we get√
αβ − γ2 = α

2C(η0)
∣∣∣∣∂η0 Vp(η0)√

C(η0)

∣∣∣∣2 . (2.2.28)

General initial values Ṽp(η0), and
√
C(η0)∂η0

Ṽp(η0)√
C(η0)

can be written as eiϕp(η0)Vp(η0)

and eiϕp(η0)
√
C(η0)∂η0

Vp(η0)√
C(η0)

with ϕp(η0) real valued7; they do however lead to the same
results in (2.2.27) and (2.2.28) as the more restricted ones considered so far. This shows
that instead of specifying the state by α, β and γ, one can also pick initial values for
Vp,
√
C∂η

Vp√
C

such that (2.2.24) is satisfied and an α > 0, and then determine the only
term in (2.2.27) involving α, β and γ, namely

√
αβ − γ2, by (2.2.28). By the above

this term has to be no smaller than 1
2 and this imposes the additional requirement

α ≥ C(η0)
∣∣∣∣∂η0 Vp(η0)√

C(η0)

∣∣∣∣2.
Now looking again at the two-point function (2.2.27) as the prime object of interest,

the upshot of the discussion is that an arbitrary homogeneous and isotropic quasifree
state is given by (2.2.27) with Vp an arbitrary function satisfying (2.2.23) and (2.2.24)

7the appearance of the same phase-function eiϕp(η0) in front of both Vp(η0) and
√
C(η0)∂η0

Vp(η0)√
C(η0)

is

again a consequence of (2.2.24).
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2 Technical background

and
√
αβ − γ2 replaced by a function Ξ of p, which is polynomially bounded and almost

everywhere bigger or equal 1
2 . Its symmetric part then takes the form

W ω,s
2 (f1, f2) =

∫
R3

Ξ(p)
[
Vp(η)Vp(η′) + Vp(η)Vp(η′)

]
. . .× f̂1(η,p)f̂2(η′,p)C3/2(η)dη C3/2(η′)dη′ dp . (2.2.29)

The special case of the pure state is obtained for the constant function Ξ = 1
2 .

2.2.4 Specification of states on surfaces of constant cosmological time

Yet another way to specify the two-point function, which is in spirit much closer to the
classical wave equation and will be used later on in the construction of LTE states, is by
giving its restriction together with the restrictions of its “time-derivatives” to a Cauchy
surface, here actually a surface of constant (conformal) cosmological time η. As the
antisymmetric part of W ω

2 is given by the commutator distribution, W ω
2 is determined

once its symmetric part W ω,s
2 is specified.

Except for the factors C2(η) and C2(η′), which can be identified as the volume elements
of the spacetime under consideration, W ω

2 depends on η and η′ via the function Vp and a
prefactor 1√

C(η)C(η′)
=: 1

Dηη′
. This prefactor will appear frequently in the following and

it turns out to be convenient to go over from the ordinary time-derivatives ∂η and ∂η′ to
alternative “time-derivatives”, which only act on the function remaining after dropping
the prefactor 1

Dηη′
. This is achieved by introducing the operators D and D′ as

D = ∂η + C ′(η)
2C(η)

D′ = ∂η′ +
C ′(η′)
2C(η′)

.

We then have for an f ∈ Ck
(
(MRW(Î , C))2

)
:

Df(η,x, η′,x′)
Dηη′

= ∂ηf(η,x, η′,x′)
Dηη′

D′ f(η,x, η′,x′)
Dηη

=
∂η′f(η,x, η′,x′)

Dηη′

and from Df , D′f and f the ordinary η and η′ derivatives of f can be recovered by

∂η = D − C ′(η)
2C(η)

, ∂η′ = D′ −
C ′(η′)
2C(η′)

.

Since the summand C′(η)
2C(η) appearing in D only depends on η, the D and D′-derivative

commute with each other and with spatial derivatives like the ordinary η and η′-deriva-
tives.
Looking now at the symmetric part (2.2.29) of the two-point (bi-)distribution, it is

seen that W ω,s
2 , DW ω,s

2 and DD′W ω,s
2 (the derivatives taken in the sense of distributions)
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2.2 Robertson Walker spacetimes

can be restricted to the surface η = η′ and these restrictions are given by

[W ω,s
2 ]η=η′ (f1, f2) = 1

C(η)

∫
R3

2Ξ(p) |Vp(η)|2 f̂1(p)f̂2(p)C4(η)dp (2.2.30)

[DW ω,s
2 ]η=η′ (f1, f2) = 1

C(η)

∫
R3

2Ξ(p)Re
(
V ′p(η)Vp(η)

)
f̂1(p)f̂2(p)C4(η)dp (2.2.31)

[
DD′W ω,s

2
]
η=η′ (f1, f2) = 1

C(η)

∫
R3

2Ξ(p)
∣∣∣V ′p(η)∣∣∣ f̂1(p)f̂2(p)C4(η)dp , (2.2.32)

where f̂1 and f̂2 are the ordinary Fourier transforms of f1, f2 ∈ C∞0 (R3). As the state is
by assumption homogeneous and isotropic, these restrictions are according to the results
cited in lemma 2.4 determined by distributions W̃ (), W̃ (η) and ˜W (ηη′) and using the
fact that the Fourier-transform maps convolutions into products8, these W̃ (), W̃ (η) and
W̃ (ηη′) are seen to be up to factors of C(η), which come from the volume element, and
a factor 1

(2π)3/2 Fourier back-transforms in the sense of distributions of the functions

ŵ() : p 7→ 2Ξ(p) |Vp(η)|2 (2.2.33)

ŵ(η) : p 7→ Ξ(p)
(
V ′p(η)Vp(η) + Vp(η)V ′p(η)

)
(2.2.34)

ŵ(ηη′) : p 7→ 2Ξ(p)
∣∣∣V ′p(η)∣∣∣2 . (2.2.35)

Once we know the restrictions of W ω,s
2 , DW ω,s

2 and DD′W ω,s
2 to η = η′ we thus know

ŵ(), ŵ(η) and ŵ(ηη′), but from these Ξ(p), Vp(η) and ∂η Vp(η)√
C(η)

can be reconstructed up to
an irrelevant, p-dependent phase factor: As already used above taking Vp(η) as positive,
the Wronski-determinant condition (2.2.24) for Vp gives Im (χ′(η)) = 1

2Vp(η) . From

(2.2.34) we get Re
(
V ′p(η)

)
= ŵ(η)(p)

2Ξ(p)Vp(η) and inserting these two relations into (2.2.35)
and expressing Vp(η) by ŵ()(p) using (2.2.33) the function Ξ(p) follows as

Ξ(p) =
√
ŵ()(p)ŵ(ηη′)(p)− (ŵ(η)(p))2 ,

which implies for Vp(η)

Vp(η) =

√
ŵ()(p)

√
2 4
√
ŵ()(p)ŵ(ηη′)(p)− (ŵ(η)(p))2

and V ′p(η):

V ′p(η) = ŵ(η)(p)
√

2ŵ() 4
√
ŵ()(p)ŵ(ηη′)(p)− (ŵ(η)(p))2

+ i

4
√
ŵ()(p)ŵ(ηη′)(p)− (ŵ(η)(p))2√

2ŵ()(p)

8With our convention for the prefactor of the Fourier-transform we have f̂ ? h = (2π)3/2f̂ ĥ.
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2 Technical background

For ŵ()(p)ŵ(ηη′)(p) − (ŵ(η)(p))2 ≥ 1
4 the condition Ξ(p) ≥ 1

2 is satisfied; the Wronski-
determinant condition (2.2.24) is always satisfied. If ŵ(), ŵ(η) and ŵ(ηη′) are in addition
polynomially bounded, this shows together with the results of the preceding section
that there exists a homogeneous and isotropic quasifree state with a two-point function
W ω,s

2 satisfying (2.2.30)–(2.2.32). On the other hand, as already argued at the end of the
preceding section, allowing for Vp(η) not anymore restricted by the condition of positivity
leads to the same state, so the the state is also uniquely specified by (2.2.30)–(2.2.32)
and we have the following

Lemma 2.9. Let W̃ , W̃ (η), W̃ (ηη′) be tempered, radially symmetric distributions on R3

with Fourier transforms ŵ(), ŵ(η) and ŵ(ηη′) satisfying ŵ()(p) > 0, ŵ(ηη′)(p) > 0, ŵ(η)(p)
real valued and ŵ()(p)ŵ(ηη′)(p) − (ŵ(η)(p))2 ≥ 1

4 for almost all p = ‖p‖. Then there
exists a unique homogeneous and isotropic state ω of the free Klein-Gordon field, such
that the symmetric part W ω,s

2 of its two-point function satisfies

[W ω,s
2 ]η=η′ (f1, f2) =C3(η)W̃ ()(f1 ∗ f2)

[DW ω,s
2 ]η=η′ (f1, f2) =C3(η)W̃ (η)(f1 ∗ f2)[

DD′W ω,s
2
]
η=η′ (f1, f2) =C3(η)W̃ (ηη′)(f1 ∗ f2) .

Intuitively, this lemma says that the two-point function of an isotropic and homoge-
neous states, which is a bi-solution of the Klein-Gordon equation, is uniquely determined
by the expected data, namely its value and combinations of first time-derivatives wrt
the two arguments on a Cauchy surface, where due to symmetry only one of the terms
[DW ω,s

2 ]η=η′ , [D′W ω,s
2 ]η=η′ is required. It should however be noted that there is an

inequality between the initial values, which has to be satisfied in order to guarantee
positivity of the state so defined; furthermore if we require the state to be a Fock-state,
i.e. Ξ to be equal to 1/2, the function ŵ(η) is determined as ŵ(η) =

√
ŵ()ŵ(ηη′) − 1

4 from
ŵ() and ŵ(ηη′). In this case only these two functions, corresponding to the initial data
Vp(η0) and V ′p(η0) for the solutions Vp of the mode-equation (2.2.23), have to be given.
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3 Condition of local thermality and
detectors

In this chapter we will discuss the concept of local thermal equilibrium used in the
following two chapters. We will start by very briefly reviewing the situation of global
thermal equilibrium on Minkowski spacetime to the extend needed in the following, then
proceed with a section motivating the specific choice of observables used to determine
local thermal properties by relating them to idealized measurements (not yet completely
rigorous) and finally present the concept of (extrinsic) local thermal equilibrium on
curved spacetimes. The results linking detectors and thermal observables were published
as a preprint [Sch07]; the parts on local thermal equilibrium mostly follow [BOR02,
Buc03]; the concept of (extrinsic) local thermal equilibrium is also contained in the
publication [SV08].

3.1 Global equilibrium states on Minkowski spacetime

Since the global equilibrium states of the massive Klein-Gordon field on Minkowski space-
time (M = R4, g = η = diag(1,−1,−1,−1)) will enter our criterion of local thermality
below, we briefly collect their properties to the extent required in the following.
To formulate the notion of global thermal equilibrium, we first need a notion of time-

evolution relating observations made in some given spacetime region to the same observa-
tions made some time t later. As the notion of (global) thermal equilibrium is formulated
for very large systems (mathematically usually for the limit of infinite system size), this
has to be a global concept which also encodes the observer (reference system) chosen.
Mathematically, we need a one-parameter family αt of isomorphisms of the field algebra
A(R4, η) acting on the φ(f) as αt(φ(f)) := φ(fχt), where fχt(x) := f(χ−1

t (x)) and all
χt are spacetime isometries encoding the observer(s) as their proper-time parametrized
flowlines (i.e. αt is required to act geometrically). Here, we are interested in global
thermal equilibrium for non-accelerated observers with wordline τ 7→ x0 + τe0, where e0
is some timelike unit vector and x0 ∈ R4 specifies the position of the observer at some
reference time. The χt are then given by χe0t : R4 3 x 7→ x + te0; the corresponding
algebra-automorphism is denoted by αe0t . Using the algebraic approach to quantum field
theory, global equilibrium states are most conveniently described by the KMS-condition
[HHW67, BR97], which generalized the concept of Gibbs states1 and allows a direct
treatment of the global equilibrium situation for infinitely extended systems (without

1It can also be derived directly as a consequence of other assumptions, which on physical grounds
should be characteristic for global equilibrium situations [PW78, HTP77].
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3 Condition of local thermality and detectors

using boxes and a thermodynamic limits) by giving a condition singling out the states
on A(R4, η) (as defined in chapter 2), which are in global equilibrium:

Definition 3.1. Let A be a ∗-algebra and αt a one-parameter group of isomorphisms
acting on A and denote for β > 0 by Sβ the strip

Sβ := {z ∈ C | 0 < Im (z) < β}

and Sβ its closure. Then a state ωβ is said to be a KMS-state at inverse temperature2

β = 1
kBT

, if for each A,B ∈ A there exist a continuous function FAB : Sβ → C analytic
in Sβ and satisfying for all t ∈ R:

ω(B(αtA)) = FAB(t) , ω((αtA)B) = FAB(t+ iβ) .

For the neutral, massive Klein-Gordon field there is for each αe0· and β > 0 a unique,
quasifree3 KMS-state [BOR02, Hüb05]. Furthermore, states for different β or e0 never
agree, so a convenient labeling for the global equilibrium states is obtained by combining
β and e0 into the timelike four-vector β =: βe0 and denoting the KMS state for the iso-
morphism group t 7→ αe0t with inverse temperature β by ωβ. By the definition of χη0· , ωβ
is an equilibrium state for an observer with rest-frame specified by a tetrad (e0, e1, e2, e3)
and the discussion so far implies that equilibrium states are not Lorentz-invariant but
rather distinguish rest-frames in relative motion to each other. This is however very sen-
sible from a physical point of view, since it is entirely possible to determine by physical
procedures whether one is at rest with respect to a typical thermodynamic system like a
gas, or moving relative to it with high speed (in contrast, relative movement with respect
to the vacuum, which is modeled by a Lorentz invariant state, can not be detected).
For the free field considered here, the KMS-states can be calculated using a Fourier

transformed version of the KMS-condition [HHW67, Haa96] from the commutator dis-
tribution; choosing coordinates (x0, x1, x2, x3) on Minkowski spacetime such that the
coordinate axes are aligned with (e0, e1, e2, e3) their two-point function is given by

W ωβ

2 (f1, f2) =
∫

R

∫
R

∫
R3

(
e−i
√
p2+m2 (x0−x′0) f̂1(x0,p)f̂2(x′0,p)

1− e−βp

− ei
√
p2+m2(x0−x′0) f̂1(x0,p)f̂2(x′0,p)

1− eβp

)
dp

2
√
p2 +m2 dx0dx′0 , (3.1.1)

where the notation introduced in chapter 2 for states on Robertson Walker spacetimes
was used, i.e. f̂ denotes the spatial Fourier-transform

f̂(x0,p) := 1
(2π)3/2

∫
R3
e−i(x

1p1+x2p2+x3p3)f(x)dx1 dx2 dx3 .

2Here kB denotes the Boltzmann constant.
3By the above definition of quasifree states this in particular means a vanishing one-point func-
tion (“gauge-invariance”) ruling out things like phase-transitions that would be reflected in non-
uniqueness. Furthermore, this also means that the n-point functions are in fact distributions; in
general this is an additional condition one has to impose in the (∗-algebraic) formulation of the KMS
condition.
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3.1 Global equilibrium states on Minkowski spacetime

As mentioned in the introduction, the formalism of local thermal equilibrium of Buch-
holz, Ojima and Roos [BOR02], introduced in a modified formulation for curved space-
times in this chapter, relies on spaces Sx of local thermal observables at each point x,
physically interpreted as idealization of measurements of (intensive) thermal quantities
in smaller and smaller regions of spacetime. The question of how this leads to the spe-
cific choice of the balanced derivatives as the generators of the Sx spaces in the concrete
case of the Klein-Gordon field is however not discussed in more detail in their paper
(although there are arguments that the set of thermal observables chosen is big enough
to separate the set of reference states). Here, the specific choice is motivated by looking
at a simple model of a detector interacting with the field and implementing the physical
idea of measurements in successively smaller spacetime regions for this model detector.
This is done in the context of Minkowski spacetime, since this is the context in which
one imagines the calibration of the observables to take place.
As a model for the measurement process some kind of Unruh-de Witt detector [Unr76],

[DeW79], in this case a two-level system moving along a given trajectory in spacetime and
interacting with the given quantum-field, is used. For large interaction-times and time-
invariant states the (suitably normalized) probability for the transition of the detector
system from its initial (ground- or excited state) to its respective other state due to
interactions with the quantum field, calculated in first order perturbation theory, can be
used to determine thermal properties of the quantum field. Namely, by the principle of
detailed balancing in a thermal state one expects the transition rates from the ground-
to the excited and from the excited- to the ground-state to be related by a Boltzmann
factor e−βE/~, if the state of the field is a thermal state at inverse temperature β and
E is the energy difference between the two levels of the detector system. In fact, such
a relation between the two transition rates for all two-level monopole detector at rest
wrt. the thermal state exactly corresponds to the KMS condition for this state [Tak86].
More generally, the dependence of the transition probabilities on E/~ corresponds to
“spectral properties” of the field, with the principle of detailed balancing as a relation
between the rates for E and −E as a special case.
Now in order to be able to proceed to measurements taking place in a short time-

interval, the idea is first not to look at the absolute transition probabilities but rather at
their differences to those in a common reference state (i.e. to “remove the vacuum fluc-
tuations”), and secondly to consider instead of the transition probabilities as function
of E the sequence of moments of this function. When proceeding to arbitrarily short
measurement times (while increasing the interaction coupling suitably) these moments
will, in general, still diverge; however, starting from the zeroth moment, which stays
finite, one can subtract from the higher moments “perturbations” by the lower moments
in such a way that the resulting (modified) moments all stay finite when sending the
duration of measurement to zero. In this limit, the modified moments are exactly what
is measured by the balanced derivatives “in timelike direction”, i.e. by the balanced
derivatives with ζ tangential to the trajectory of the detector. At this point, some po-
tential problem has to be mentioned: Since all the calculations are based on a treatment
of the interaction of the quantum system and the detector in first order perturbation
theory, it is not clear, whether in the limit of a short interaction with big couplings they
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3 Condition of local thermality and detectors

are still trustworthy. This point will taken up once more at the end of the discussion of
detectors.
Finally it will be shown that although these balanced derivatives do not span the whole

Sx-spaces at first, in fact all the balanced derivatives can be recovered when considering
detectors in different states of motion, and even though part of the discussion before
that point might not be physically relevant due to the above mentioned problems with
the perturbative approach, at this point one gains some insight concerning the relation
of balanced derivatives and detector velocities that is not very strongly dependent on
the precise mechanism of detector-field interaction and therefore can be expected to
also hold if (some potentially modified) balanced derivatives can be related to idealized
measurements in a more rigorous setup.

3.2 Thermal observables
3.2.1 Specification of the detector-model
The physical picture of the measurements considered here is the following: An ensemble
of quantum-mechanical detectors (two-level systems) moves along a (common, classical)
trajectory γ, parametrized by proper time τ , with each member initially in its ground-
states. At some time the detectors are (smoothly) switched on, interact with the field
for some time and are then switched off again. Finally the number of detectors in the
excited state is determined, which yields the transition probability for a single detector
(which is of course the same as the expectation value of the transition rate times the
interaction duration).
Mathematically, the free two-level detector system is described in the Heisenberg pic-

ture by a two-dimensional complex Hilbert-Space (HD, < ·, · >D) spanned by the two
orthonormal states ψg and ψe of the detector. These two states are assumed to be eigen-
states with eigenvalues zero and ε of the detector-Hamiltonian HD and furthermore the
existence of a (time-dependent) self-adjoint operator τ 7→M(τ) := eiτHDM0e

−iτHD such
that |< ψe,M0ψg >| 6= 0 is assumed.
For a given state ω of the quantum field, the coupled detector-field system is described

in the interaction picture in the Hilbert-space Hω ⊗HD where (Hω, πω,Ωω) denotes the
GNS representation [Wal94, Chap. 4] of A(R4, η) belonging to ω. The initial state Φ
of the coupled system is taken to be Ωω ⊗ ψg and the time evolution of this state is
determined by

i∂τΦ(τ) = Hint(τ)Φ(τ) := [χ(τ)φ(γ(τ))⊗M(τ)] Φ(τ) ,

where γ : R→ R4 is the detector-trajectory as described above, χ ∈ S (R) is the detector
switching function (real-valued and normalized by the requirement

∫
R χ(τ)dτ = 1) and

R4 3 x 7→ φ(x) is related to πω(φ(f)) by πω(φ(f)) =
∫
φ(x)f(x)dx in the sense of

quadratic forms on (a subset of) Hω.
Even though we are in a quantum mechanical setup, one would expect that measure-

ment with a physical detector should not lead to huge back-reaction effects, so follow-
ing [Tak86, BD84], the field-detector interaction is calculated perturbatively; in weak
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coupling situations such a procedure can be rigorously justified [DBM06], for further
discussion of the situation encountered here see below.
To first order perturbation-theory, the state of the detector-field system at time τ is

given by

Φ(τ) = Ωω ⊗ ψg − i
∫ τ

−∞
χ(τ ′)

(
φ(γ(τ ′))Ωω

)
⊗
(
M(τ ′)ψg

)
dτ ′ .

For the probability of finding the detector in the excited state ψe and the field in a state
Ψn at large times, one then has

|〈Ψn ⊗ ψe,Φ(∞)〉|2 =
∫

R

∫
R
〈χ(τ ′)φ(γ(τ ′))Ωω ⊗M(τ ′)ψg,Ψn ⊗ ψe〉 × . . .

. . . ×〈Ψn ⊗ ψe, χ(τ ′′)φ(γ(τ ′′))Ωω ⊗M(τ ′′)ψg〉dτ ′dτ ′′

and by summing over a complete set of Ψn in Hω and using

< ψe,M(τ)ψg >=< ψe, e
iτHM0e

−iτHψg >= eiετ < ψe,M0ψg >

the probability of finding the detector in the excited and the field in any state is

Pω(ε) = |< ψe,M0ψg >|2
∫

R

∫
R
χ(τ ′)χ(τ ′′)e−iε(τ ′−τ ′′) × . . .

. . . × < φ(γ(τ ′))Ωω, φ(γ(τ ′′))Ωω > dτ ′dτ ′′

= m

∫
R

∫
R
χ(τ ′)χ(τ ′′)e−iε(τ ′−τ ′′)ω(φ(γ(τ ′))φ(γ(τ ′′)))dτ ′dτ ′′ ,

where the constant of proportionality m := |< ψe,M0ψg >|2 depends on details of the
detector but not on the field configuration.
Now instead of comparing directly the transition probabilities Pω(ε) and Pωβ (ε) in two

states, one can in principle compare their difference to the transition probability Pωref in
a common reference state. Choosing ω∞ as ωref this amounts heuristically to “removing
the vacuum fluctuations” and the resulting (difference in) transition probability is then

P ren
ω (ε) = m

∫
R

∫
R
e−iεsFω(τ, s)χ (τ + s/2)χ (τ − s/2) dsdτ (3.2.1)

Fω(τ, s) := ω (φ (γ (τ + s/2))φ (γ (τ − s/2)))− . . .
. . .− ω∞ (φ (γ (τ + s/2))φ (γ (τ − s/2))) .

Assuming ω to be a Hadamard state, the integrand is smooth and compactly supported
and therefore ε 7→ P ren

ω (ε) is a rapidly decreasing, smooth function. Thus all moments
of this function are defined and we turn to the analysis of these moments in order to
obtain a means for local investigation of states.

3.2.2 Convolution and moments
As already mentioned above, in the case of global equilibrium and for χ approaching
a constant function, the dependence of the transition probabilities on ε approaches a
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3 Condition of local thermality and detectors

function that gives information about the thermal properties of the state under consid-
eration. Disregarding for a moment the τ -integration in (3.2.1), more rapid switching
of the detector can be seen to disturb this function by convolution with a function that
becomes wide as χ becomes narrow, as is of course to be expected due to time-energy
uncertainty. There is however a way to get around this, if one is only interested in the
moments of this function and knows the moments of χ.
To see this, consider two rapidly decaying functions f, h ∈ S (R). Denote the k-th

moment of a function f ∈ S (R) by

Mk[f ] :=
∫

R
tkf(t)dt

and assumeM0[h] = 1 (i.e. the integral over h is one). Then by a direct computation
one has for the convolution f ∗ h:

Mk[f ∗ h] =
k∑
j=0

(
k

j

)
Mj [f ]Mk−j [h] . (3.2.2)

For the special case k = 0 this relation givesM0[f ∗ h] =M[f ], so the zeroth moment
of f is always known once the zeroth moment of f ∗ h is known. Noting that on the
rhs of equation (3.2.2) the k-th moment of f is multiplied by one and the further terms
involve only lower moments of f , one can therefore determine the moments of f from
those of f ∗ h and h by the recursion

Mk[f ] =Mk[f ∗ h]−
k−1∑
j=0

(
k

j

)
Mj [f ]Mk−j [h] (3.2.3)

starting fromM0[f ].

3.2.3 Modified moments of transition rates and elements of Sx
Now returning to (3.2.1), for general χ the application of the idea of the preceding
section to the transition-probability is complicated by the τ -integration. This problem
can however be overcome by choosing χ to be a Gaussian of width σ centered at τ0:

χσ,τ0 : τ 7→ 1
σ
√

2π
e−

(τ−τ0)2

2σ2 .

Then χσ,τ0 (τ + s/2)χσ,τ0 (τ − s/2) factorizes into χσ/√2,τ0(τ)χ
√

2σ,0(s) and the moments
of ε 7→ P ren

ω (ε) are:

Mk[P ren
ω ] = m

∫
R

∫
R

∫
R
Fω(τ, s)χσ/√2,τ0(τ)dτ e

−iεsχ√2σ,0(s)dsε
kdε .

Identifying the Fourier transform of s 7→
√

2π
∫
R Fω(τ, s)χσ/√2(τ)dτ with f and the

Fourier transform of
√

2πχ√2σ with h, this is the situation of the preceding section and
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3.2 Thermal observables

by the recursive procedure described there, one can obtain the k-th moments of f which
will be called Pkω. Explicitly they are given by

Pkω = m

∫
R

∫
R
Fω(τ, s)χσ/√2,τ0(τ)dτe

−iεsdsεkdε .

By partial integration using the decay-properties of χσ,τ0 and the regularity of Fω this
can be expressed as

Pkω = m

∫
R
(−i∂s)kFω(τ, s)|s=0χσ/

√
2,τ0(τ)dτ . (3.2.4)

For this expression one can proceed to the limit σ → 0, which shows that the Pkω are
objects which can be measured over arbitrarily short time-intervals. In the limit one has

lim
σ→0
Pkω = m(−i∂s)kFω(τ0, s)|s=0

= m(−i/2)k∂ks (ω − ω∞) (φ(γ(τ0 + s))φ(γ(τ0 − s))) |s=0 (3.2.5)

Defining for a (sufficiently differentiable) function f : R4 × R4 → R and u1, . . . , uk ∈ R4

the balanced derivative [ð(u1,...,uk)f ](x) by

[ð(u1,...,uk)f ](x) = ∂t1 . . . ∂tkf
(
x+

k∑
i=1

tiui , x−
k∑
j=1

tjuj
)
|t1=...=tn=0 (3.2.6)

one can rewrite (3.2.5) for inertial detectors with γ(τ0) = x and γ̇(τ0) = u as

lim
σ→0
Pkω = m(−i/2)k ð(u,...,u)w(x)

w(x, y) := ω(φ(x)φ(y))− ω∞(φ(x)φ(y)) in the sense of distributions.

The definition (3.2.6) slightly generalizes the definition for ð(µ1,...,µk) from [BOR02] which
is recovered by choosing ui = ηµiµieµi with e0, . . . , e3 the basis vectors of R4, so the
expectation values of elements m(−i/2)k ð(0,...,0) :φ2:ω∞ from the Sx-spaces in the state
ω used there can be interpreted as measurements of Pkω in the limit of arbitrarily short
interaction of detector and field. A prominent example from this class is the Wick-square
itself, which gives the expectation-value of the local temperature squared.

3.2.4 Moving detectors and the full Sx-space
As calculated in the last section, measurement of balanced derivatives ð(u,...,u) :φ2(x):ω∞
can be described by a limiting process involving measurements carried out on an ensemble
of detectors moving through the spacetime point x with a four-velocity u. As they stand,
these balanced derivatives only generate a subset of the Sx-spaces used in the formalism
of local thermal equilibrium on Minkowski spacetime [BOR02, Buc03] and important
(local thermal) observables like the (thermal) stress-energy tensor are not among them.
As already mentioned, global equilibrium states on Minkowski spacetime are not in-

variant under the full Poincaré group but single out a set of inertial frames that only
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3 Condition of local thermality and detectors

differ by rotations and translations. Physically, they correspond to the observers being at
rest with respect to the “gas” described by the thermal state. As thermality properties,
like the principle of detailed balancing, hold only for those systems coupled to the field
which are at rest in these inertial frames, for the investigation of an equilibrium state
with an unknown associated rest frame one should use not one detector, but detectors
with all possible velocities smaller than the velocity of light relative to a given one. The
detector behaving according to the principle of detailed balancing then indicates the rest
frame of the given state, and starting from this one can then check, whether the readings
of the other detectors are compatible with the interpretation of being in relative motion
to a thermal state.
Whereas for a global equilibrium state, whose rest-frame is usually known a priori

this discussion might sound rather odd, the hydrodynamical description of gases by a
velocity field varying in space and time can be rephrased as the statement that at each
point the state looks like a thermal state, with reference frames at different points being
in relative motion to each other. As this dependence of the frames on space-time is
not known a priori but rather one piece of information an LTE-formalism should yield,
it seems therefore sensible to not just consider one detector with a worldline passing
through a spacetime point x, but the set of all detectors passing through it.
By the above procedure, one then obtains as local thermal observables the balanced

derivatives ð(u,...,u) :φ2 :ω∞ (x) for all timelike unit vectors u. Continuing this for the
k-th balanced derivative (i.e. with u appearing k-times in ð(u,...,u)) to (nonzero) ũ of
non-unit length by inserting u = ũ√

ũaũa
and multiplying the result by (ũaũa)k/2, we get

the balanced derivatives with u1 = . . . = uk = ũ for arbitrary timelike vectors ũ. If we
had this results for arbitrary u ∈ R4, using the fact that fð : u 7→ ω(ð(u,...,u) :φ2:ω∞) is
homogeneous of degree k and smooth for Hadamard states, it would again follow that
we could get back the (totally symmetric) balanced derivative for arbitrary u1, . . . , uk
as4

1
k!
∂t1 . . . ∂tkfð(t1u1 + . . .+ tkuk)|t1=...=tk=0

(again the concept of polarization). This can however also be applied to the case when u
is only allowed to be timelike: Replacing t1u1 + . . .+ tkuk by ξ+ t1u1 + . . .+ tkuk, where
ξ is a timelike vector, the t1, . . . , tk-derivatives of fð can be calculated for t1, . . . , tk
in a neighbourhood of zero using only values of fð on timelike vectors, resulting for
t1 = . . . = tk = 0 in a totally symmetric form in u1, . . . , uk, which still depends on ξ;
but again by the smoothness of fð for ξ → 0 we get back the desired, arbitrary balanced
derivative.
Though this argument, showing that all balanced derivatives can be recovered from the

special ones related to detector measurements, relies on limits, it should be noted that
interesting cases of general balanced derivatives can be expressed in terms of the special
ones using purely algebraic relations; one example are the second balanced derivatives,

4This was first pointed out to me by Detlev Buchholz
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which can be expressed as

1
4

ð(ej ,ej) :φ2:ω∞=ð(e0+ 1
2 ej ,e0+

1
2 ej) :φ2:ω∞ +ð(e0− 1

2 ej ,e0−
1
2 ej) :φ2:ω∞ −ð(e0,e0) :φ2:ω∞

2ð(e0,ej) :φ2:ω∞=ð(e0+ 1
2 ej ,e0+

1
2 ej) :φ2:ω∞ −ð(e0− 1

2 ej ,e0−
1
2 ej) :φ2:ω∞

ð(ej ,ek) :φ2:ω∞=ð(e0+ 1
2 ej+

1
2 ek,e0+

1
2 ej+

1
2 ek) :φ2:ω∞ −ð(e0+ 1

2 ej−
1
2 ek,e0+

1
2 ej−

1
2 ek) :φ2:ω∞

− ð(e0+ 1
2 ek,e0+

1
2 ek) :φ2:ω∞ +ð(e0− 1

2 ek,e0−
1
2 ek) :φ2:ω∞ ,

where k 6= j, k, j = 1, 2, 3 and e0, . . . , e3 are the basis-vectors of R4.

3.2.5 On the perturbative aspect of the calculation
The calculation so far has been a first order perturbation theoretic calculation, which
in most cases might seem appropriate for a (small) detector system interacting with
the (big) system under investigation. The problem here is that one in the end wants
to consider very short measurements, which implies that the cut-off functions χ, who
are interpreted as couplings, get big (though their area remains constant during this
process). The question of the validity of the perturbation-theoretic discussion can then
be split up into two parts:

1. Does the perturbation series converge or are there at least error estimates for
calculations in finite order perturbation theory ?

2. Does the regularization procedure (taking the relative transition probabilities, re-
constructing the balanced derivatives recursively from moments) still survive the
limit of arbitrarily short interactions when using exact or higher order expressions
for the transition probabilities ?

Whereas for the first question, rough calculations seem to indicate that this is not a
serious problem, the second question is much more severe: First the construction of the
modified moments used implicitly the simple structure of (expectation values) of Wick
products of two field operators to establish the existence of all moments for the relative
transition rate.
When calculating the transition probabilities to higher order perturbation theory,

expectation values of products of more field-operators and time-ordering appears, so it
is not clear whether for the relative transition rates all the moments exist, which in turn
of course makes the second step impossible. Whether this is really the case and whether
there are ways out by for example replacing the relative transition probabilities and/or
the moments by some other construction are interesting questions, they have however
so far not been investigated.
Another way to approach this problem would be not to proceed all the way to point-

limits, but to pick χσ,τ0 with a sufficiently large width (i.e. σ) that the calculation of the
transition rates in first order perturbation theory is still sufficiently accurate (potentially
only up to some maximum energy Emax, if there is trouble with convergence of the
moments), and then use the moments for this finite value of σ as approximations for
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the balanced derivatives. From (3.2.4) one sees, that this results in balanced derivatives
smeared with χσ/

√
2,τ0 , so instead of the idealized, point-localized measurements one

would get some coarse-graining scale that depends on the detail of the field-theory and
the measurement process.
At first, from (3.2.4) it looks as this would actually work for balanced derivatives of

arbitrary order with the same coarse graining scale, but although candidates for their
expectation values can of course be calculated, due to the recursive nature of the calcula-
tion involving subtraction of lower moments, the initial difference between the transition
probabilities calculated in first order perturbation theory and the true transition proba-
bilities will most likely lead to quickly increasing errors in the higher moments, so by this
approach one can only hope to get the first few balanced derivatives, smeared over a part
of a geodesic. Still, since we use only the zeroth and second balanced derivative in the
next chapters, at current this seems the best one can say about the physical relevance of
the formal relation between detectors and balanced derivatives in first order calculation
theory. To make this second approach to the problem more rigorous, one would first need
error-estimates relating the first-order perturbational calculation to the true transition
rates (taking care of the problem of existence of moments) and then one would need to
check, how these errors propagate in the recursive calculation of the expectation values
of the (smeared) balanced derivatives.
As a last remark, it should be pointed out that the discussion of moving detectors

does not depend very strongly on the specific detector-model and the precise way the
balanced derivatives are defined, justifying to some extent its use as a guiding principle
in the definition of the balanced derivative.

3.3 The criterion of extrinsic, local thermality
Using the linear spaces Sx generated by the balanced derivatives ðµ :φ2:, µ a multiindex,
the criterion of local thermality of a state ω at a spacetime-point x ∈ R4 is formulated
in [BOR02] as follows5

Definition 3.2. A state ω is called Sx-thermal if there exists a KMS-state ωβ such that
for all φ(x) ∈ Sx there holds

ω(φ(x)) = ωβ(φ(x)) . (3.3.1)

This means that the state ω can not be distinguished from ωβ on the thermal observ-
ables in Sx. Thermality in an open set O ⊂ R4 is then defined as thermality at each
point x ∈ O, where the reference state on the right hand side of (3.3.1) may depend on
x.
Attempts to generalize this definition to curved spacetime face two problems:

• What should be the replacement for the balanced derivatives generating the spaces
Sx ?

5More precisely, the definition given here is the special case of local-thermality with a sharp (inverse)
temperature; in [BOR02] on the right hand side of (3.3.1) a state from a set of reference states,
including also mixtures of KMS-states for different temperatures and rest-frames, is allowed
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• What should be put in place of the global equilibrium states ωβ ?

As it turns out, the formalism of locally covariant quantum field suggests an answer to
both questions.
First, in the discussion of the recovery of generalized balanced derivatives we used the

ideas of detectors in different states of motion, characterized by their velocity u at x.
Heavy use was made of the fact that the detector-velocities are elements of some linear
space at x to deduce totally symmetric tensors, the balanced derivatives. In addition to
their velocity at x, the additional requirement fixing the worldlines of the detectors was
that they move freely (i.e. along geodesics). But the velocities of different observers at a
point x in a general spacetime M are still from a linear space, namely the tangent space
TxM , and if we assume that also in curved spacetime the detector response depends in
a similar way upon properties of the state, encoded in a function W : M ×M → C
replacing (x, x′) 7→ m(−i/2)k(ω − ω∞)(φ(x)φ(x′)) along its trajectory, the right hand
side of (3.2.5) gets replaced by

∂kτW (γu(τ), γu(−τ))|τ=0 .

By the definition of the exponential map expx at x this can be rewritten as

∂kτW (expx(τu), exp(−τu))|τ=0

and if we take the point of view that we extract the observed values for the thermal
observables from this function of u ∈ TxM by the above procedure, we end up with the
balanced derivative (still denoted by ð(u1,...,uk)) defined as

[ð(u1,...,uk)W ](x) :=
∂tn . . . ∂tkW (expx(t1u1 + . . .+ tkuk), exp(−t1u1 − . . .− tkuk))|t1=...=tk .

(3.3.2)

This might at first look a bit odd from a geometrical point of view, but since it uses
only the geometrically defined exponential map as an input, this is a totally symmetric,
n-linear map on TxM and allowing x to vary over the domain of definition N ⊂M ×M
of a smooth functionW , we can associate to n vector-fields U1, . . . , Uk a smooth function
defined for x ∈M as [ð(U1(x),...,Uk(x))W ](x). This depends only on the values of U1, . . . , Uk
at x ∈ M and is linear in each entry, so the balanced derivative in fact defines a

(0
k

)
-

tensor field, denoted in abstract index notation as [ða1,...,akW ].
If W is a symmetric function, the balanced derivatives so defined vanishes for odd n;
using the geodesic equation and once more the symmetry of W , the first non-trivial
balanced derivative is calculated as

[ðabW ](x) = [∇a∇bW ]x=x′ − [∇a∇b′W ]x=x′ − [∇a′∇bW ]x=x′ + [∇a′∇b′W ]x=x′
=2 [∇a∇bW ]x=x′ − 2 [∇a∇b′W ]x=x′ . (3.3.3)

This second balanced derivative can also be defined in a slightly different way using
parallel transports [SV08]; due to the fact that the Levi-Civita connection is torsion free
the two definitions coincide.

47



3 Condition of local thermality and detectors

As a next step, we need to find a replacement for the Wick-products, defined on
Minkowski spacetime by normal-ordering with respect to the vacuum state. Since the
idea behind the whole formalism is to use observables that correspond to (idealized)
measurements of specific thermal quantities, we would like to take observables modeling
the measurements of the same quantities as generators of the Sx-spaces on each space-
time, so we would e.g. like to have Wick-products : φ(M, g)2 : (x) that on each spacetime
M correspond to the measurement of (a simple function of) the temperature at point
x. The direct way would now be to try and identify observables by their properties (ex-
pectation values in states with known interpretation, etc.), for example by generalizing
the discussion of detectors from the preceding sections to general spacetimes, but there
are immediate problems arising in this approach. For example, to check whether an
observable is sensitive to thermal properties of the system under investigation one needs
a notion of equilibrium situation, and while global equilibrium states as defined by the
KMS conditions do not exist on general spacetimes without time-translation isometries,
local equilibrium is precisely what we want to define and therefore cannot be used in
such an investigation either. Like in classical physics we can however take covariance
principles as a guiding principle in defining observables in general relativity; here this
is the concept of a locally covariant quantum fields from section 2.1.2. Since the ideal-
ized, pointwise measurements are mathematically realized as linear spaces (not algebras)
Sx of point-localized observables, we only need to define the expectation values of the
covariant derivatives of the Wick square and this is done in the following

Definition 3.3. Let ω be a Hadamard state on A(M, g). Then the expectation value
of the (n-th order) covariant, balanced derivative ða1...an :φ2 :SHP (x) in the state ω is

ω(ða1...an :φ2 :SHP (x)) := [ða1...anW
SHP
ω,k ](x) .

This is independent of k due to the fact that for k′ > k, Gk−Gk′ and all its derivatives
of order no higher than k vanish when restricting to the diagonal x = x′; since W SHP

ω,k is
symmetric, the odd balanced derivatives are all zero.
Concerning possible choices in the definition of the covariant balanced derivatives,

because these are in the end just sums of Wick products of derivatives of (two) field
operators (with the same scaling degree for each summand), the same ambiguity as for
the definition of those arise. There are at least three possible ways to reduce these
ambiguities:

1. Use the formalism of [HW05] to establish relations between the balanced derivatives
of different order induced from corresponding relations between Wick products of
differentiated fields.

2. Use the fact that these ambiguities take the form of (locally constructed) geo-
metric terms with the right scaling behaviour multiplied with the undetermined
parameters, which have to be the same for all spacetimes. Now pick a few space-
times with non-trivial curvature on which there still exist one-parameter families of
timelike isometries that lead to KMS-states which are in a suitable sense isotropic
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3.3 The criterion of extrinsic, local thermality

and homogeneous (e.g. Einstein static universes [HE73] or de Sitter for a spe-
cial (inverse) temperature). These states should correspond physically to global
equilibrium states and their thermal properties are known. Calculate for each
spacetime the expectation values of the covariant balanced derivatives in these
global equilibrium states and try to adjust the parameters in such a way that the
observables have the expected values. Since the parameters have to be fixed to the
same value for all spacetime, for each additional spacetime this gives (potentially)
more restrictions on them. A first example for an application of this procedure
is the massless scalar field on de Sitter spacetime, where the free parameter c1 in
front of the ambiguity c1R ·1 was fixed by the requirement that for de Sitter KMS-
states :φ2 :SHP should, like in Minkowski spacetime, give (up to a proportionality
constant) the square of the temperature of the KMS-state6 [BS07].

3. One could try to fix the parameters by requiring that the Quantum Energy In-
equalities in the next chapter are “optimal” in a suitable sense.

Here we will take the more pragmatic approach of simply sticking to the SHP-Wick
products and when relevant carry a term encoding the renormalization ambiguities along.
This is justified by the fact that most results do not really depend on the precise form
of the ambiguity (an exception is ANEC in the next chapter; see the discussion there
for more details); however all three procedures are well worth further investigation,
especially since one could encounter incompatible requirements for the parameters that
would point to problems in this approach to local equilibrium.
Note that the SHP Wick products differ on Minkowski spacetime from the Wick

products obtained by normal ordering with respect to the vacuum-state by a multiple
of the unit-operator; for the Wick-square and the second order balanced derivative the
relations are given by7

:φo2 :SHP (xo) = :φo2:ω∞ (xo) + c0,m1 (3.3.4)
ðµν :φo2 :SHP (xo) =ðµν :φo2:ω∞ (xo) + c2,mηµν1 . (3.3.5)

The constants c0,m and c2,m depend on the mass of the field and the length-scale L
appearing in the definition of the Hadamard parametrix (see [HW01], [Mor03] for a
discussion of their relation to the concept of local covariance); in the chapter on Quantum
Energy Inequalities and for the construction of LTE-states it will be set to one, again
since this is considered part of the (geometric) renormalization ambiguity. The constants
c0,m, c2,m can be calculated as a special case of the technique explained in chapter 5 as

c0,m = m2

(4π)2
[
2γ + log

(
m2

4

)
− 1

]
c2,m =− m4

(4π)2
[
2γ + log

(
m2

4

)
− 5

2

]
.

6These states are not homogeneous and isotropic (i.e. when considered on a part of de Sitter which
can be regarded as a Robertson Walker spacetime) and this is seen on higher balanced derivatives;
for the (scalar) Wick square this does however not matter.

7φo is the field on Minkowski spacetime; see below for the reason for this notation
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3 Condition of local thermality and detectors

We can now take the space S(n)
x as the linear spaces generated by the covariant,

balanced derivatives of :φ2 :SHP of order no higher than n; in the following we will restrict
to the rather small space S(2)

x , which is however still big enough to contain energy-like
observables.
Finally, we need to address the problem of reference states in the LTE condition.

As the formalism of locally covariant quantum fields is based on an identification of
observables on different spacetimes, this suggest that the observables so identified could
be used to compare states in quantum field theories on different spacetimes. Since the
global equilibrium situation is well understood on Minkowski spacetime, the states of
quantum fields on Minkowski spacetime will be taken as reference states, which also has
the advantage that the results derived for the LTE-formalism there can be used8.
To make this idea precise, we need to compare tensorial quantities at the point x ∈M

with tensorial quantities in Minkowski spacetime. To be able to do that, we need an
isometric isomorphism between (Mo, η) and (TxM, g). Here, a convenient way to proceed
is by first fixing an orthonormal basis in Minkowski spacetime once and for all and
only take KMS-states with rest-frame specified by the timelike vector of this basis as
reference states. The balanced derivative with respect to this basis we denote as above
by ðµν :φo2 :SHP (xo), where xo is some reference point in Mo (by translation-invariance
of ωβeo , the particular choice of xo is irrelevant). The isomorphism is then specified by
giving a tetrad (e0, . . . , e3) at x ∈ M (e0 timelike and future-pointing) to which this
basis is mapped.
With this preparations we can now define our condition of local thermality:

Definition 3.4. Let ω be a Hadmard-state for the quantized linear scalar field φ on a
globally hyperbolic spacetime (M, g) and let φo denote the quantized linear scalar field,
with the same parameters as φ, on Minkowski spacetime Mo.

a) We say that ω is S(2)
x -thermal at a point x ∈ M if, with some orthonormal tetrad

e = (e0, e1, e2, e3) at x such that e0 is timelike and future-pointing, there is a thermal
equilibrium state ωβeo of φo so that the equalities

ω(:φ2 :SHP (x)) =ωβeo (:φo2 :SHP (xo)) (3.3.6)
=ωβeo (:φo2:ω∞ (x0)) + c0,m

vawbω(ðab :φ2 :SHP (x)) =vµwνωβeo (ðµν :φo2 :SHP (xo)) (3.3.7)
=vµwνωβeo (ðµν :φo2:ω∞ (xo)) + c2,mv

µwνηµν

hold for all vectors v, w ∈ TxM with coordinates vµeµ = v, wνeν = w.

b) Let N be a subset of M . We say that ω is S(2)
N -thermal if ω(: φ2 :SHP (x)) and

ω(ðab :φ2 :SHP (x)) are continuous in x ∈ N and if, for each x ∈ N , ω is S(2)
x -thermal

at x.
8To clearly distinguish the quantities on Minkowski spacetime from those on (M, g), they will be denoted
with a sub- or superscript index o respectively o; following this logic Minkowski spacetime itself will
be denoted Mo.
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3.3 The criterion of extrinsic, local thermality

Introducing for the right hand sides appearing in (3.3.6) and (3.3.7) the abbreviations

ϑo(β) =ωβe0(:φo2 :SHP (xo))

εoµν(β) =− 1
4
ωβe0(ðµν :φo2 :SHP (xo))

and using the explicit expression for the two-point-function of the KMS-state at inverse
temperature β from equation (3.1.1) we have

ϑo(β) = 1
β2χ(mβ) + c0,m (3.3.8)

εo00(β) = 1
β4χtt(mβ) + c2,m (3.3.9)

εojj(β) = 1
β4χxx(mβ)− c2,m j ∈ {1, 2, 3} , (3.3.10)

where

χ(ξ) = 1
2π2

∫
R+

ρ2

e
√
ρ2+ξ2 − 1

dρ√
ρ2 + ξ2

= 1
2π2

∫
R+

(
ρ√

ρ2 + ξ2
eρ − 1

e
√
ρ2+ξ2 − 1

)
ρdρ
eρ − 1

(3.3.11)

χtt(ξ) = 1
2π2

∫
R+

√
ρ2 + ξ2

e
√
ρ2+ξ2 − 1

ρ2dρ

= 1
2π2

∫
R+

(√
ρ2 + ξ2

ρ

eρ − 1
e
√
ρ2+ξ2 − 1

)
ρ3 dρ
eρ − 1

(3.3.12)

χxx(ξ) = 1
6π2

∫
R+

ρ4

e
√
ρ2+ξ2 − 1

dρ√
ρ2 + ξ2

= 1
6π2

∫
R+

(
ρ√

ρ2 + ξ2
eρ − 1

e
√
ρ2+ξ2 − 1

)
ρ3 dρ
eρ − 1

. (3.3.13)

From these expressions it follows that the relation

εoµ
µ(β) = m2

β2 χ(mβ)− c2,m , (3.3.14)

relating the trace of εoµν to χ, holds.
Since the ϑo and εoµν are (except for the constants c0,m and c2,m) thermal functions

that already appeared in previous investigations of the LTE-condition on Minkowski
spacetime [Buc03, Hüb05] and their thermal interpretation was there determined as a
scalar thermometer reading (kbT )2χ

(
m
kBT

)
at temperature T and the thermal part of

the stress-energy tensor respectively, for an S(2)
x -thermal state we can now assign at x

these two thermal functions to ω; they will be denoted as

ϑω(x) =ω(:φ2 :SHP (x)) (3.3.15)
εωab(x) =ω(ðab :φ2 :SHP (x)) . (3.3.16)
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3 Condition of local thermality and detectors

This assignment gives the local temperature and energy density which, as explained in
the introduction, are some of the quantities that one wants to define rigorously in an
LTE approach to quantum field theory in curved spacetime.
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4 Energy inequalities

After having fixed our notion of local thermality, as a first application we now investigate
its relation to the (expectation values) of the energy density of the field. In Minkowski
spacetime, the second balanced derivative as the most elementary, non-scalar thermal
observable is closely related to the stress energy tensor of the theory [BOR02] and by
definition is a function of temperature for LTE-states; the difference is interpreted as
being due to energy-fluxes which show up in the full stress energy tensor, but not in
the second balanced derivative, which as its “thermal part” should be a density-like
quantity. Assuming that the same holds true on general spacetime and that energy-
fluxes in LTE states with bounded (local) temperature are themselves bounded, one
therefore expects to be able to derive bounds on the energy densities in LTE-states with
bounded (local) temperature. In this chapter we will derive such bounds, showing that
these intuitive ideas are in fact true; we will start by giving a brief review of the concept
of energy inequalities for quantum fields and put the results obtained in the following
into perspective, then proceed to define the stress-energy tensor for the quantum fields
considered here and finally derive two quantum energy inequalities, where for the second
the question of renormalization ambiguities will once more appear. We end with a
comment on possible generalizations of the results obtained here. The results presented
in this chapter are published in a joint paper with Rainer Verch [SV08].
One of the interesting features of the expectation value of stress energy is that the

energy density seen by an observer traveling on a timelike geodesic γ with tangent vector
va at x, ω(Tab(x))vavb, is unbounded above and below as ω ranges over the set of all
states ω (for which the expectation value of stress-energy at any spacetime point x
can be reasonably defined). This is a long known feature of quantum field theory (see
[EGJ65]) and is in contrast to the behaviour of macroscopic matter which can usually be
assumed to satisfy one of the classical energy conditions, like the weak energy condition,
which means T classab (x)vavb ≥ 0, i.e. the energy density seen by any observer is always
positive at any spacetime point x. Energy positivity conditions like the (pointwise) weak
energy conditions play an important role in the derivation of singularity theorems [HE73,
Wal84]. One consequence of energy positivity conditions when plugged into Einstein’s
equations is that gravitational interaction is always attractive. Negative energies, in
contrast, would be affected by a repelling gravitational interaction. This could, a priori,
lead to solutions of Einstein’s equations exhibiting very strange spacetime geometries,
such as spacetimes with closed timelike curves, wormholes or “warpdrive scenarios”
[MTY88, Alc94]. Moreover, concentration of a vast amount of negative energies and
their persistence over a long duration could lead to violations of the second law of
thermodynamics.
Motivated by the latter point, L. Ford has proposed that physical states of quantum
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4 Energy inequalities

fields in generic spacetimes should not permit arbitrary concentration of large amounts
of negative energy over a long duration [For78]. Such limitations on physical quantum
field states have come to be called quantum energy inequalities (QEIs). Let us explain
this concept in greater detail. Let L be a set of states of the quantum field such that
the expectation value of the stress-energy tensor, ω(Tab(x)), is defined for each ω ∈ S at
each spacetime point x. We will furthermore suppose that this quantity is continuous in
x for each ω ∈ L. Under these assumptions, we say that the set of quantum field states
L fulfills a QEI with respect to γ if∫

h2(t)ω(Tab(γ(t)))γ̇a(t)γ̇b(t) dt ≥ q(γ, h) (4.0.1)

holds for all smooth (or at least C2) real functions h having compact support on the
(open) curve domain, with a constant q(γ, h) > −∞; the constant may depend on the
curve γ and the weighting function h, but is required to be independent of the choice of
state ω ∈ L.
In principle this concept makes sense for arbitrary (C1 and causal) curves γ, in practice

one however usually restricts the class of curves to timelike (or lightlike) geodesics. Such
a limiting case of a QEI is the following: If γ is a complete (lightlike or null) geodesic,
then one says that a set of states L fulfills the averaged null energy condition (ANEC) if

lim inf
λ→0+

∫
h2(λt)γ̇a(t)γ̇b(t)ω(Tab(γ(t))) dt ≥ 0

holds for all states ω ∈ L. Conditions of such form (and related conditions, see (4.3.1)),
if valid for all complete null geodesics, allow conclusions about focusing of null geodesics
for solutions to the semiclassical Einstein equations similar to that resulting from a
pointwise null energy condition [Tip78, Bor87, Rom88, WY91]. (See also the beginning
of section 4.3). Thus, the ANEC is a key property for deriving singularity theorems for
solutions to the semiclassical Einstein equations.
Quantum energy inequalities have been investigated extensively for quantum fields

subject to linear field equations in the recent years, and there is now a wealth of results
in this regard. We refer to the reviews by Fewster and by Roman [Rom05, Few07a]
for representative lists of references. Important to mention, however, is the fact that for
many linear fields, like the minimally coupled scalar field, the Dirac field and the electro-
magnetic field, it could be shown that the set of Hadamard states fulfills a QEI with re-
spect to timelike curves γ in generic globally hyperbolic spacetimes [Few00, FV02, FP03].
There is also an intimate relation between QEIs, the Hadamard condition and thermo-
dynamic properties of linear quantum fields [FV03]. It has been shown that QEIs put
strong limitations on the possibility of solutions to the semiclassical Einstein’s equations
to allow exotic spacetime scenarios such as wormholes or warpdrive [FR96, FR05, PF97].
It is also worth mentioning two other recent results. First, it has been shown that the
non-minimally coupled linear scalar field on any spacetime violates QEIs for the class of
Hadamard states; nevertheless, the class of Hadamard states fulfills in this case weaker
bounds, called “relative QEIs”, cf. [FO08] for results and discussion. Secondly, one is
interested in lower bounds qγ(h) which depend (apart from renormalization constants
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entering the definition of expectation value of the stress energy tensor) only on the
underlying spacetime geometry in a local and covariant manner, and one also aims at
making this dependence as explicit as possible. Considerable progress on this issue, for
the case of the minimally coupled linear scalar field on globally hyperbolic spacetimes,
has been achieved in [FS07]. We will derive QEI-like bounds on sets of LTE-states of the
non-minimally coupled linear scalar field φ(x) on generic globally hyperbolic spacetimes.
More precisely, we consider LTE states ω whose thermal function ϑω(x) = ω(:φ2: (x)) is
bounded by some constant T2

0 (corresponding to a maximal squared temperature) and
we will show that there are upper and lower bounds for the averaged energy density∫ ∞

−∞
η(τ)vavbω(Tab(γ(τ))) dτ ,

averaged against a C2-weighting function η ≥ 0 with compact support along any causal
geodesic γ with affine parameter τ and tangent va = γ̇a. The lower bound depends
only on T2

0, the geodesic γ and η, while the upper bound depends additionally on local
tetrads entering into the definition of LTE states. The lower bound is therefore state-
independent within each set of LTE states ω with a fixed maximal value of ϑω. The
bounds depend on the spacetime geometry in a local covariant manner which, together
with their dependence on T2

0, we will make explicit. This result holds for all values of
curvature coupling ξ in the Klein-Gordon operator Pm,ξ, and upon averaging along causal
geodesic, not only those which are timelike. Hence, the result is not immediate from know
quantum energy inequalities for Hadamard states, as these are violated in general for
non-minimally coupled fields [FO08], and upon averaging along null geodesics [FR03].
Furthermore, we will show that the ANEC holds for LTE states ω of the quantized
linear scalar field with curvature couplings 0 ≤ ξ ≤ 1/4, provided that the growth of
the thermal function ϑω along the null geodesics γ fulfills certain bounds. Despite the
fact that we have to assume that the LTE states we consider are Hadamard states –
in order to have a well-defined, local covariant expression of expected stress-energy for
these states – our derivation of QEIs and ANEC makes no further use of the Hadamard
property but uses only properties of LTE states. Therefore, one may expect that, in
principle, similar results could be derived for LTE states of interacting quantum fields.

4.1 The stress energy tensor
Consider first the case of the classical Klein-Gordon field ϕ on a globally hyperbolic
spacetime (M, g) with mass parameter m ≥ 0 and curvature coupling parameter ξ, i.e.
ϕ satisfies

Pm,ξϕ = (�g + ξR+m2)ϕ = 0 (4.1.1)
If ϕ is a field configuration, i.e. a smooth solution to the field equation (4.1.1), then the
corresponding classical stress-energy tensor is a

(0
2
)
(co-)tensor field T (ϕ)

ab given by

T
(ϕ)
ab (x) =(∇aϕ(x))(∇bϕ(x)) + 1

2
gab(x)(m2ϕ2(x)− (∇cϕ)(∇cϕ)(x))

+ ξ(gab(x)∇c∇c −∇a∇b −Gab(x))ϕ2(x) , x ∈M (4.1.2)
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where Gab = Rab − 1
2gabR is the Einstein tensor.

Now let φ be the quantized linear scalar field on (M, g), corresponding to the choice of
parameters m and ξ. The stress energy tensor for this (quantum) field will be obtained
by correspondence from the stress-energy tensor of the classical field with the products
of the field ϕ and its derivatives replaced by the corresponding, covariant Wick products
from section 2.1.2. Again we even want to have expectation values at points x ∈ M
which exist in states of sufficient regularity like Hadamard states. For those from (2.1.5)
we get:

ω(:φ∇aφ:SHP (x)) =
[
∇a′W SHP

ω,k

]
x=x′

(4.1.3)

ω(:φ∇a∇bφ:SHP (x)) =
[
∇a′∇b′W SHP

ω,k

]
x=x′

(4.1.4)

ω(:(∇aφ)(∇bφ):SHP (x)) =
[
∇a∇b′W SHP

ω,k

]
x=x′

(4.1.5)

with k ≥ 2, x ∈M . (Note again that a and a′ are identified upon taking the coincidence
limit x = x′.) Due to the symmetry of W SHP

W,ω k, one can easily check that the following
Leibniz rule is fulfilled for SHP Wick-products involving derivatives:

ω(∇a(:φ2 :SHP (x))) =2ω(:: φ∇aφ:SHP (x)) (4.1.6)
ω(∇a(:φ∇bφ:SHP (x))) =ω(:(∇aφ)(∇bφ):SHP (x)) + ω(:φ∇a∇bφ:SHP (x)) . (4.1.7)

The renormalized expectation value of the stress-energy is then obtained by replac-
ing the classical expressions ϕ2(x), (∇aϕ(x))(∇bϕ(x)), and so on, by ω(:φ2 :SHP (x)),
ω(:(∇aφ)(∇bφ):SHP (x)), etc. Using also the Leibniz rule for SHP Wick products, this
leads to

ω(T SHP
ab (x)) =− ω(:φ∇a∇bφ:SHP (x)) + 1

4
ω(∇a∇b :φ2 :SHP (x))

+
(1

4
− ξ

)
ω
(
∇a∇b :φ2 :SHP (x)− gab(x)∇c∇c :φ2 :SHP (x)

)
+ 1

2
gab(x)ω

(
:φ∇c∇cφ:SHP (x) +m2 :φ2 :SHP (x)

)
− ξGab(x)ω(:φ2 :SHP (x)) .

This expression, however, has the defect of a non-vanishing divergence. The way to
cope with this problem, following Wald [Wal78, Wal94], is like this: It can be shown
that ∇aω(T SHP

ab (x)) = ∇bQ(x), where (apart from a free constant which can be set to a
preferred value depending on the mass parameterm) Q is a function which is determined
by the local geometry of (M, g); in particular, Q is independent of the state ω. One may
therefore subtract the term Q(x)gab(x) from ω(T SHP

ab (x)) to make the resulting quantity
have vanishing divergence. There remains an ambiguity in that one may still add other(0
2
)
(co-)tensor fields Cab which are determined by the local geometry of (M, g) and have

vanishing divergence. We take here the same view as put forward in [FS07], namely that
the specification of Cab is a further datum of the underlying quantum field φ on (M, g),
in addition to the parameters m and ξ. An alternative method has been proposed by
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Moretti [Mor03], which we won’t follow here mainly because we would like to maintain
close contact to other works on quantum energy inequalities. This understood, we finally
define the renormalized expectation value of the stress energy tensor in some Hadamard
state ω of the linear scalar field φ on (M, g) as

ω(T ren
ab (x)) = ω(T SHP

ab )−Q(x)gab(x) + Cab(x) , x ∈M . (4.1.8)

Next, observe that for each state ω of φ with two-point function of Hadamard form,

F (x) =ω(:φ(∇a∇a +m2 + ξR)φ:SHP (x))
=ω(:φ(∇a∇aφ):SHP (x)) + (m2 + ξR(x))ω(:φ2 :SHP (x))

is a continuous function of x ∈ M , independent of the state ω, entirely determined by
the local geometry of (M, g) and the parameters m and ξ of φ. To see this, note that

ω(:φ(∇a∇a +m2 + ξR)φ:SHP (x)) =
[
(∇a′∇a′ +m2 + ξR)W SHP

ω,k

]
x=x′

.

On the other hand, by definition W SHP
ω,k = W ω

2 −GSHP
k and since W ω

2 is a bi-solution of the
Klein-Gordon equation in the sense of distributions, i.e. W ω

2 (f, (∇b∇b+m2+ξR)h) = 0,
it follows that (∇a′∇a′ +m2 + ξR)W SHP

ω,k is independent of ω; furthermore as we will see
more explicitly in section 5.1.1, (∇a′∇a′ +m2 + ξR)GSHP

k is a continuous function on its
domain of definition and thus can be restricted to the diagonal x = x′. In consequence,
F (x) is state-independent, continuous in x, and actually it is determined by the local
geometry of (M, g) since so is Gk (by the Hadamard recursion relations) 1.

4.2 Quantum Weak Energy Inequality
Using the Leibniz rule, we can rewrite the expression for ω(T ren

ab ) as follows:

ω(T ren
ab (x)) =ω(− :φ∇a∇bφ:SHP (x)) + 1

4
ω
(
∇a∇b :φ2 :SHP (x)

)
+
(1

4
− ξ

)
ω(∇a∇b :φ2 :SHP (x))

+ (4ξ − 1)
(
ω(− :φ∇c∇cφ:SHP (x)) + 1

4
ω(∇c∇c :φ2 :SHP (x))

)
gab

+
((

(1− 4ξ)(m2 + ξR)− 1
2
ξR

)
gab − ξGab

)
ω(:φ2 :SHP (x))

+
(

12ξ − 5
2

)
Q(x)gab(x) + Cab(x) (4.2.1)

By (3.3.3) and once more the Leibniz rule, εωab can also be expressed as

εωab(x) = ω(− :φ∇a∇bφ:SHP (x)) + 1
4
ω(∇a∇b :φ2 :SHP (x))

1This term will reappear several times in chapter 5, where an extended version of this property will be
used to reduce orders of derivatives and there also an explicit expression for it on Robertson Walker
spacetimes is given.
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Thus, if ω is an S(2)
x -thermal state of φ, we obtain

ω(T ren
ab (x)) =εωab(x) + (4ξ − 1)gab(x)εωc c(x)

+ (1
4
− ξ)∇a∇bϑω(x) + (gab(x)ψ(x)− ξRab(x))ϑω(x)

+ (12ξ − 5/2)Q(x)gab(x) + Cab(x) , (4.2.2)

where we use the abbreviation

ψ(x) = (1− 4ξ)(m2 + ξR(x)) . (4.2.3)

To derive bounds from this expression, we need estimates of the functions εoµν that on
LTE-states by definition is related to εωab(x) at points x where ω is locally S(2)

x -thermal.
The following lemma gives the required estimates for the functions χtt and χxx, in terms
of which it is expressed by equation (3.3.9),(3.3.10). Furthermore it gives the asymptotics
for those functions and in addition for the function χ, related to ϑo by equation (3.3.8).

Lemma 4.1. Let β > 0 and e = (e0, . . . e3) an orthonormal basis of Minkowski space-
time. Then for εoµν = −1

4ω
βe0(ðµν :φ2 :SHP) and the functions χ(mβ) := β2ωβe0(:φ2:ω∞),

χtt(mβ) := −β4

4 ω
βe0(ð00 :φ2 :ω∞) and χxx(mβ) := −β4

4 ω
βe0(ð11 :φ2 :ω∞) the following

statements hold:

a) For v a lightlike vector or a timelike unit vector (vµ the components with respect to
e), one has the bound

2π2(v0)2

45β4 − vµvµ
c2,m
4
≥ vµvνεoµν ≥

(v0)2

β4 χtt(mβ)− vµvµ
c2,m
4

. (4.2.4)

b) For ξ →∞ there holds

lim
ξ→∞

χ(ξ) = 1
12

(4.2.5)

lim
ξ→∞

χtt(ξ) =π
2

30
(4.2.6)

lim
ξ→∞

χxx(ξ) =π
2

90
. (4.2.7)

Proof. As already calculated in section 3.3, in the specific basis chosen εoµν is diagonal
with the diagonal elements given by (3.3.9) and (3.3.10). Using the integral expressions
(3.3.12) and (3.3.13), for vµvνεoµν(β) we end up with

vµvνεoµν = 1
2π2β4

∫
R+

(v0)2(ρ2 +m2β2) + ‖v‖2 ρ2/3
e
√
ρ2+m2β2 − 1

ρ2dρ√
ρ2 +m2β2 + vµvµc2,m
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4.2 Quantum Weak Energy Inequality

The upper bound is obtained by estimating ‖v‖2 ρ2 by (v0)2(ρ2 +m2) using v0 ≥ ‖v‖;
then using the fact that x 7→ x

ex−1 is monotonically decreasing estimate√
ρ2 +m2β2

e
√
ρ2+β2m2

≤ ρ

eρ − 1
.

The value of the remaining integral is obtained from tables as 4
3 ·

π2

30 [Ste84, 23.2.7]; the
lower bound is immediate.
For the limits in part b), we use that for fixed ρ > 0, the function x 7→

√
ρ2+x2

x
eρ−1

e
√
ρ2+x2−1

is monotonously decreasing (for x > 0) and approaches one for ξ → 0; this implies by
monotone convergence (rewriting the integrands in the integrals defining χ, χtt and χxx
as in equation (3.3.11)–(3.3.13)):

lim
ξ→0

χ(ξ) = 1
2π2

∫
R+

ρ dρ
eρ − 1

= 1
12

(4.2.8)

lim
ξ→0

χηη(ξ) = 1
2π2

∫
R+

ρ3 dρ
eρ − 1

= π2

30
(4.2.9)

lim
ξ→0

χxx(ξ) =1
3

lim
ξ→0

χηη(ξ) = π2

90
(4.2.10)

We now need to specify the class of states of bounded temperature, for which we will
derive Quantum Energy Inequalities:

Definition 4.2. Let β′ > 0, x ∈M . Then we define Lβ′(x) as the set of all S
(2)
x -thermal

states ω of the linear scalar field on (M, g) fulfilling

ϑω(x) ≤ 1
(β′)2

χ(mβ′) + c0,m . (4.2.11)

If N ⊂M , we define Lβ′(x) as the set of all S
(2)
N -thermal states so that (4.2.11) is fulfilled

for all x ∈ N .

In other words, ω is in Lβ′(x) if it is locally thermal at x with 1/β ≤ 1/β′. Now
let N be an open subset of M , and let γ : [τ0, τ1] → N , τ 7→ γ(τ) be a geodesic with
affine parameter τ , and denote by va = γ̇a the tangent vector field of γ. By the geodesic
equation, it holds that

(vavb∇a∇bϑω)(γ(τ)) = d2

dτ2ϑ
ω(γ(τ)) .

Consequently, we obtain for ω ∈ Lβ′(N) and η ∈ C2
0 ((τ0, τ1)),∣∣∣ ∫ η(τ)(vavb∇a∇bϑω)(γ(τ))dτ

∣∣∣ =∣∣∣ ∫ η′′(τ)ϑω(γ(τ))dτ
∣∣∣

≤||η′′||L1

∣∣∣∣ 1
(β′)2

χ(mβ′) + c0,m

∣∣∣∣ . (4.2.12)
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4 Energy inequalities

Here, η′′ is the second derivative of η.
With this definitions and results in place, we are now able to derive bounds on

vavbω(T ren
ab ) for lightlike or timelike vectors v. We will treat lower bounds first.

Theorem 4.3. Let φ be the quantized linear scalar field on (M, g), with parameters m, ξ
and Cab, and let ω be a state of φ having a two-point function of Hadamard type.
a) Suppose that ξ = 1/4, and let v be a lightlike vector at x ∈ M , or a timelike vector

at x with vava = 1. If ω is in Lβ′(x), β′ > 0, then

vavbω(T ren
ab (x)) ≥ q(x, v;β′) , (4.2.13)

where

q(x, v;β′) =− 1
4

∣∣∣vavbRab(x)∣∣∣ ∣∣∣∣ 1
β′2

χ(mβ′) + c0,m

∣∣∣∣
+
(1

2
Q(x)− 1

4
c2,m

)
vav

a + vavbCab .

b) Let ξ be arbitrary, let N ⊂ M , and let γ : [τ0, τ1] → N be an affinely parametrized
lightlike geodesic defined on a finite interval, with tangent vector field va = γ̇a. Sup-
pose that η is in C2

0 ((τ0, τ1)) with η ≥ 0. If Lβ′(N), there holds the bound∫
η(τ)vavbω(T ren

ab (γ(τ))) dτ ≥ q0(γ, η;β′) . (4.2.14)

Here, writing
R[γ] = max

τ∈[τ0,τ1]
|γ̇a(τ)γ̇b(τ)Rab(γ(τ))| ,

and defining C[γ] analogously, the bounding constant is given by

q0(γ, η;β′) =−
[
|ξ|R[γ]

∣∣∣∣ 1
β′2

χ(mβ′) + c0,m

∣∣∣∣+ C[γ]

]
||η||L1

−
∣∣∣14 − ξ∣∣∣ · ∣∣∣∣ 1

β′2
χ(mβ′) + c0,m

∣∣∣∣ · ||η′′||L1

c) Let ξ be arbitrary, let N ⊂ M , and let γ : [τ0, τ1] → N be an affinely parametrized
timelike geodesic with tangent vector field va = γ̇a, so that vava = 1. Assume that η
is in C2

0 ((τ0, τ1)) with η ≥ 0. If ω ∈ Lβ′(N), there holds the bound∫
η(τ)vavbω(T ren

ab (γ(τ))) dτ ≥ q1(γ, η;β′) , (4.2.15)

where, using the notation ψ[γ] = maxτ∈[τ0,τ1] |ψ(γ(τ))|, and defining Q[γ] similarly,
the bounding constant is given by

q1(γ, η;β′) =−
∣∣∣14 − ξ∣∣∣ · ∣∣∣∣ 1

β′2
χ(mβ′) + c0,m

∣∣∣∣ · ||η′′||L1

− (ψ[γ] + |ξ|R[γ]) ·
∣∣∣∣ 1
β′2

χ(mβ′) + c0,m

∣∣∣∣ · ||η||L1

−
(
|12ξ − 5

2 |Q[γ] + |4ξ − 1||c2,m|+ C[γ] + |c2,m|
4

)
· ||η||L1 .
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4.2 Quantum Weak Energy Inequality

Proof. The proof of the statement consists in using the LTE-condition (3.3.6), (3.3.6)
which (together with the definitions (3.3.15), (3.3.16)) relates the term εωab(x) to εoµν and
then inserting the estimates of Lemma 4.1 and discarding manifestly positive terms, in
combination with estimate (4.2.12) for the average of the second derivatives of ϑω along
the geodesic. The term involving second derivatives of ϑω doesn’t occur for ξ = 1/4,
which makes it possible to give a pointwise lower bound in this case.

The central assertion of Theorem 4.3 is that the lower bound of the energy density
averaged along a causal geodesic depends only on the temperatures an LTE state attains
on the geodesic, and is otherwise state-independent. The bound worsens (shifts towards
the left on the real axis) as the temperature increases, i.e. with increasing 1/β′. This is
related to the question of the sharpness of the obtained bounds. The point to notice here
is that they were obtained by bounding the term εωabv

avb from below by the temperature
independent term −vava|c2|/4. However, εωabvavb grows with temperature as can be seen
from (4.2.4) and the growth is (for high temperatures) with the fourth power of temper-
ature. As the ϑω dependent term, which is responsible for the worsening of the bounds,
grows (asymptotically) with the square of the temperature, it will be compensated for
sufficiently high temperatures by the dropped term. By a more careful investigation
one could therefore hope to obtain a lower bound where the temperature dependence is
replaced by a dependence on the spacetime geometry and γ. Finally it should also be
noted that the bounds are local covariant.
For upper bounds on the averaged energy density of LTE states, an additional state-

dependence shows up: The bounds depend also on the tetrad e appearing in the condition
of S(2)

x -thermality, Def. 3.4. In this sense, the lower bounds on the averaged energy
densities of LTE states are stronger than the upper bounds. This is similar to what
holds for averages of energy densities for arbitrary Hadamard states of the linear scalar
field [FO08].
Let x ∈M , and let e = (e0, . . . , e3) be an orthonormal tetrad at x with e0 timelike and

future-pointing. We define Lβ′(x, e) as the set of all states ω in Lβ′(x) where the S(2)
x -

thermality conditions (3.3.6) and (3.3.7) hold with respect to the given tetrad. Similarly,
let N be a subset of M , and let N 3 x 7→ e(x), e(x) = (e0(x), . . . , e3(x)) be a C0 field
of orthonormal tetrads over N , with e0(x) timelike and future-pointing for all x. Then
we define Lβ′(N, e) as the set of all states ω in Lβ′(N) such that, for each x ∈ N , ω
satisfies the S(2)

x -thermality conditions (3.3.6) and (3.3.7) with respect to e = e(x). With
these conventions, again using the LTE-condition and the above estimates, we obtain
the following upper bounds on (averaged) energy densities.

Theorem 4.4. Let φ be the quantized linear scalar field on (M, g), with parameters m,
ξ and Cab, and let ω be a state of φ having two-point function of Hadamard form.

a) Suppose that ξ = 1/4, let v be a lightlike vector at x ∈ M , or a timelike vector at x
with vava = 1, If ω is in Lβ′(x, e), β′ > 0, then

p(v, x;β′, e) ≥ vavbω(T ren
ab (x)) , (4.2.16)
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4 Energy inequalities

where

p(v, x;β′, e) =2π2(v0)2

45β′4
+ 1

2

∣∣∣vavbRab∣∣∣ ∣∣∣∣ 1
β′2

χ(mβ′) + c0,m

∣∣∣∣
+ q(x, v;β′)

with v0 = va(e0)a.

b) Let ξ be arbitrary, N ⊂M , and let γ : [τ0, τ1]→ N be an affinely parametrized lightlike
geodesic defined on a finite interval, with tangent vector field va = γ̇a. Suppose that
η is in C2

0 ((τ0, τ1)) with η ≥ 0. If ω is in Lβ′(N, e), then

p0(γ, η;β′, e) ≥
∫
η(τ)vavbω(T ren

ab (γ(τ)))dτ , (4.2.17)

where
p0(γ, η;β′, e) = 2π2

45(β′)4
(v0

[γ])
2||η||L1 + |q0(γ, β′; η)|

with v0
[γ] = maxτ∈[τ0,τ1] γ̇a(τ)ea0(γ(τ)) .

4.3 Averaged Null Energy Condition (ANEC)

In this section we derive the averaged null energy condition (ANEC) for S(2)
N -thermal

states of the quantized linear scalar field φ on a globally hyperbolic spacetime (M, g).
The ANEC on a state ω of φ demands that

lim inf
τ±→±∞

∫ τ+

τ−
vavbω(T ren

ab (γ(τ))) dτ ≥ 0 (4.3.1)

for all complete lightlike geodesics γ in M with affine parameter τ and tangent va = γ̇a.
If this condition holds, and if (M, g) together with φ and ω are a solution to the semi-
classical Einstein equation in the form

Gab(x) = 8πω(T ren
ab (x)) , x ∈M , (4.3.2)

then this implies that
lim inf
τ±→±∞

∫ τ+

τ−
vavbGab(γ(τ)) dτ ≥ 0 (4.3.3)

for all complete lightlike geodesics γ. (We address the issue for the semiclassical Einstein
equations with an additional contribution by a classical stress-energy tensor below.) It
has been shown that this weaker form of the usual pointwise null energy condition,
which demands that `a`bGab(x) ≥ 0 for all lightlike vectors `a at each x ∈ M , is still
sufficient to reach the same conclusions with respect to singularity theorems as obtained
from the pointwise null energy condition, i.e. that congruences of geodesics will focus
with expansion diverging to −∞ at finite affine geodesic parameter [HE73]. The validity
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4.3 Averaged Null Energy Condition (ANEC)

of (4.3.1) is therefore of importance for the properties of the spacetime structure of
solutions to the semiclassical Einstein equations.
It has been argued in [WY91] that condition (4.3.1) may be replaced by the following

condition:
lim inf
λ→0

∫ ∞
−∞

ηλ(τ)vavbω(T ren
ab (γ(τ))) dτ ≥ 0 (4.3.4)

for any η ∈ C2
0 (R), η ≥ 0, with η(0) > 0 and ηλ(τ) = η(λτ) for λ > 0. More precisely,

in [WY91] it has been shown that (4.3.4) and (4.3.2) imply that the expansion of a
congruence of lightlike geodesics around γ becomes singular along γ (in the sense of
diverging to −∞ at a finite value of the affine parameter) unless it vanishes identically
on γ. (In [WY91] this argument is given for half-line geodesics, but it carries over to the
case at hand as will be shown in our Appendix A.3)
Now let ω ∈ S(2)

N , and let γ be a complete lightlike geodesic in N ⊂ M with affine
parameter τ and tangent va = γ̇a. Then, from (4.2.2),

vavbω(T ren
ab ) = vavbεωab +

(1
4
− ξ

)
vavb∇a∇bϑω − ξvavbGabϑω + vavbCab (4.3.5)

holds along γ. Thus, positivity properties of the (integrated) energy density vavbω(T ren
ab )

depend also on the behaviour of Gab and Cab. The sign of the term involving Gab is not
known. To circumvent this difficulty, we assume that the underlying spacetime (M, g)
together with φ and ω are solutions to the semiclassical Einstein equations (4.3.2), since
it is this situation in which the ANEC is applied to deduce (4.3.3) and the ensuing
statements about focusing of lightlike geodesics. Supposing that (M, g) together with
φ and ω are solutions to the semiclassical Einstein equations, and also that ω is an
S

(2)
N -thermal state, we obtain upon combination of (4.3.2) and (4.3.5) the equation

vavb[Gab(1 + 8πξϑω − 8πCab] = 8πvavb
(
εωab +

(1
4
− ξ

)
∇a∇bϑω

)
(4.3.6)

on N . In order to draw further conclusions, one must specify Cab. We recall that Cab
is a datum of the linear quantum field φ, a priori only restricted by the requirement
that T ren

ab be a local covariant quantum field and divergence-free, thus Cab should be
locally constructed from the spacetime metric. Following Wald [Wal94], one can make
the assumption that Cab have canonical dimension, which leads to the form

Cab = Agab +BGab + Γ δ

δgab
S1(g) +D

δ

δgab
S2(g) , (4.3.7)

where S1(g) =
∫
M R2dµg, S2(g) =

∫
M RabR

abdµg, and δ/δgab means functional differen-
tiation with respect to the metric, with constants A, B, Γ, D as remaining renormaliza-
tion ambiguity for the quantum field φ (see [Wal94] for additional discussion). For the
rest of our discussion, we will simplify matters by assuming Γ, D = 0.
Making these assumptions and observing that hence, vavbCab = BvavbGab for all

lightlike vectors va, (4.3.6) assumes on N the form

vavbGab(1 + 8π(ξϑω −B)) = 8πvavb
(
εωab +

(1
4
− ξ

)
∇a∇bϑω

)
. (4.3.8)
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The constant B is still free, and one may now try to choose B in such a way that (4.3.8)
entails the ANEC for all lightlike geodesics in N ⊂ M and an as large as possible class
of S(2)

N -thermal states ω. We will show that this is possible with different conditions on
B for the cases ξ = 1/4, 0 < ξ < 1/4, ξ = 0.

Theorem 4.5. Let (M, g) be a globally hyperbolic spacetime, let φ be the quantized linear
scalar field on (M, g), with parameters m, ξ,Cab, where Cab = Agab + BRab, with real
constants A,B.
Suppose further that ω is a quasifree Hadamard state for φ, that ω ∈ S(2)

N for N ⊂M ,
and that (M, g) together with φ and ω provides a solution to the semiclassical Einstein
equation (4.3.2).
Let γ be a complete lightlike geodesic in N with affine parameter τ and tangent va = γ̇a,

and let η ∈ C2
0 (R), η ≥ 0. Then

lim
λ→0

∫ ∞
−∞

η(λτ)vavbω(T ren
ab (γ(τ))) dτ ≥ 0 (4.3.9)

holds if any of the following groups of conditions is assumed:

1.) ξ = 1/4, B < 1 + 2πc0,m. In this case one even has

vavbω(T ren
ab (x)) ≥ 0

pointwise for all x ∈M and all lightlike vectors va at x.

2.) 0 < ξ < 1/4, B ≤ ξc0,m + 1/(8π),

λ ln(ϑω(γ(τ/λ)))→ 0 as λ→ 0 for almost all τ , (4.3.10)∫ r

s
λ| ln(ϑω(γ(τ/λ)))|dτ < k <∞ for small λ and all s < r ∈ R . (4.3.11)

3.) ξ = 0, B < 1/8π,

λϑω(γ(τ/λ))→ 0 as λ→ 0 for almost all τ , (4.3.12)∫ r

s
λϑω(γ(τ/λ))dτ < K <∞ for small λ and all s < r ∈ R . (4.3.13)

Remark 4.6. (a) If, instead of (4.3.2), the semiclassical Einstein equations are assumed
to hold in the form

Gab(x) = 8π(T class
ab (x) + ω(T ren

ab (x)))

with a stress-energy tensor T class
ab for classical, macroscopic matter distribution, and if

it is assumed that this stress-energy tensor fulfills the pointwise null energy condition
`a`bT class

ab (x) ≥ 0 for all lightlike vectors `a at each point x ∈M , then the statements
of the theorem remain valid with T class

ab + ω(T ren
ab ) in place of ω(T ren

ab ).
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4.3 Averaged Null Energy Condition (ANEC)

(b) Conditions (4.3.10) and (4.3.11) say, roughly speaking, that ϑω(γ(τ)) should not
grow faster than e|τ |(1−ε) for |τ | → ∞, while (4.3.12) and (4.3.13) say that ϑω(γ(τ))
should not grow faster than |τ |1−ε as |τ | → ∞. Since

ϑω(γ(τ)) = (β(γ(τ))−2χ(mβ(γ(τ))) + c0,m

and since
χ(mβ)→ 1

2π2

∫ ∞
0

ρ

eρ
dρ for β → 0 ,

this means that the growth of the temperature 1/β(γ(τ)) at γ(τ) appearing in Def.
3.4 of S(2)

γ(τ)-thermality ω should not exceed e|τ |(1−ε)/2 and |τ |(1−ε)/2 as |τ | → ∞,
respectively.

Proof of Thm 4.5.

1.) If ξ = 1/4, then (4.3.8) assumes the form

vavbGab(1 + 8π(ϑω/4−B)) = 8πvavbεωab . (4.3.14)

If B < 1 + 2πc0,m, then the factor 1 + 8π(ϑω/4 − B) is strictly positive, as is the
right hand side of (4.3.14). This equality holds pointwise at all x ∈ M and for all
lightlike vectors va, thus proving, in combination with the assumed property (4.3.2),
the statement of the theorem.

2.) For 0 < ξ < 1/4, B = ξc0,m + 1/(8π)− ξc, where c ≥ 0, (4.3.8) takes the form

vavbGab(8πξ(ϑω − c0,m + c)) = 8πvavbεωab + 8π(1/4− ξ)vavb∇a∇bϑω . (4.3.15)

Observing that vavb∇a∇bc0,m = 0, the last equation is turned into

vavbGab = vavbεωab
ξ(ϑω − c0,m + c)

+ (1/4− ξ)vavb∇a∇b(ϑω − c0,m)
ξ(ϑω − c0,m + c)

, (4.3.16)

where it was used that ϑω − c0,m + c > 0. The first term on the right hand side of
(4.3.16) is positive. Upon integration against a non-negative C2

0 weighting function
η along the geodesic γ we obtain, using the abbreviation

u(τ) = ϑω(γ(τ))− c0,m ,

the inequality∫
η(τ)(vavbGab)(γ(τ)) dτ ≥ 1/4− ξ

ξ

∫
η(τ) u′′(τ)

u(τ) + c
dτ .

By partial integration,∫
η(τ) u′′(τ)

u(τ) + c
dτ =

∫
η(τ)

(
u′(τ)

u(τ) + c

)2
dτ +

∫
ln(u(τ) + c)η′′(τ) dτ .
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Thus, since the first integral on the right hand side is non-negative, (1/4− ξ)/ξ > 0
for the ξ considered and using the monotonicity of the logarithm together with c ≥ 0,∫

η(λτ)(vavbGab)(γ(τ)) dτ ≥ 1/4− ξ
ξ

∫
λ ln(u(τ/λ))η′′(τ) dτ ,

and owing to assumptions (4.3.10) and (4.3.11), the expression on the right hand
side converges to 0 as λ→ 0. Equation (4.3.9) is then again implied by the assumed
property (4.3.2).

3.) If ξ = 0, equation (4.3.8) turns into

vavbGab(1− 8πB) = 8πvavbεωab + 1
4
vavb∇a∇bϑω , (4.3.17)

and by the condition on B, the factor 1− 8πB is strictly positive. Observing again
positivity of 8πvavbεωab, upon integration against a non-negative C2

0 weighting func-
tion η along γ one obtains∫

η(λτ)vavbGab(γ(τ)) dτ ≥ 1
4(1− 8πB)

∫
λu(τ/λ)η′′(τ) dτ

and the right hand side converges to 0 as λ→ 0 by assumptions (4.3.12) and (4.3.13).
Again (4.3.9) is deduced from the assumed validity of (4.3.2).

4.4 Generalized Local Thermal Equilibrium States

The notion of LTE states in [BOR02], and the related definition of S(2)
x -thermal states, is

actually more general than the definition given in section 3.3. In [BOR02] the possibility
was considered that an LTE state ω coincides on Sx-observables not necessarily with a
thermal equilibrium state at sharp temperature in a certain Lorentz frame, but with a
mixture of such states.
In our setting, where we work with the linear scalar field, this corresponds to a mod-

ification of definition 3.4 as follows: As discussed in section 3.1, the quasifree thermal
equilibrium states for different (inverse temperatures) and different rest-frames can be
labeled as ωβ, where the vectors β take values in V +, the set of future-directed timelike
vectors in Minkowski spacetime.
Let (M, g) be a globally hyperbolic spacetime, let V +

x ⊂ TxM be the set of future-
directed timelike vectors at x ∈M , and let ρx be a Borel measure on V +

x supported on
a compact subset Bx ⊂ V +

x , with
∫
Bx
dρx(β) = 1. Then we say that a Hadamard state

ω of the linear scalar field φ on (M, g) is a generalized S(2)
x -thermal state if

ω(:φ2 :SHP (x)) =
∫
Bx
ωβ(:φo2:ω∞ (xo))dρx(β) + c0,m ,

vawbω(ðab :φ2 :SHP (x)) =vµwν
∫
Bx
ωβo (ðµν :φo2:ω∞ (xo))dρ(β) + c2,mv

µwνηµν
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4.4 Generalized Local Thermal Equilibrium States

holds for all (spacelike) vectors v, w ∈ TxM for some xo ∈ Mo. Making further the as-
sumption that F 7→

∫
M

∫
Bx
F (x,β)dρx(β)dµg(x), F ∈ C∞0 (TM,C) is a distribution (on

the manifold TM), such that x 7→
∫
Bx
F (x,β)dρx(β) is C2, one can define generalized

S
(2)
N -thermal states in analogy to the definition of S(2)

N -thermal states in section 3.3.
With these conventions and assumptions, the results of the theorems 4.3, 4.4 and 4.5

extend to generalized S(2)
N -thermal states, under identical assumptions, except that the

bounds have to be corrected for the ρx-integrations.
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5 On the existence of locally thermal states

After we motivated and formulated our condition of local thermality for states in chap-
ter 3 and investigated the possibility to derive Quantum Energy Inequalities for states
satisfying this condition in chapter 4, we now have to turn to the question of existence
of such states. Even though we only consider the same, weak version of local thermality
as in the chapter on Quantum Energy Inequalities, it seems rather hopeless to construct
states satisfying this condition on sets of nonzero dimension in general (globally hyper-
bolic) spacetimes. The main problem is that the LTE condition, the equations of motion
and the positivity condition are interlocked in a rather complicated way and while an
investigation of the first two conditions is most easily done using the two-point functions
directly (i.e. in “real space”), the positivity condition is most easily investigated by using
representations in which it is “diagonalized” (on Minkowski spacetime by using Fourier
transforms) and for the massive, scalar field even on Minkowski spacetime this makes
the construction of nontrivial states a difficult thing [Hüb05].
In general spacetimes there is no equivalent of the Fourier transform available, so one

would have to attack the positivity questions entirely without it; for the cosmological
spacetimes considered here, the situation is however better insofar, as there is still a
partial Fourier transform available, namely the Fourier transform on the spatial slices of
constant, conformal time. The construction presented towards the end of this chapter
will make heavy use of this and as a result lead to states on the whole spacetime, i.e. the
positivity condition is fully under control. There is however a price to pay for this; the
(homogeneous and isotropic) states defined in such a way are only (strictly) S(2)

x -thermal
on an initial Cauchy surface. While this of course less than one really desires, it is nev-
ertheless some real advance in the quest for physically meaningful states in quantum
field theory on cosmological spacetimes, because on the one hand the construction pre-
sented here is very explicit, giving states with well controllable regularity (in favorable
conditions even Hadamard states). On the other hand, at the end of the chapter we will
indicate why it is quite plausible that for the interesting regime of high temperatures
one can construct states, which actually remain close to thermal equilibrium for some
amount of (cosmological) time. Such states can then be physically interpreted as ap-
proximations to LTE states to the extent such a concept makes sense in a model without
interactions.
Comparing the states obtained here to states obtained by other popular constructions

on cosmological spacetimes, they can be seen as intermediate between the states often
used in cosmology (low order adiabatic vacua) with explicitly specified mode-functions
that can then be used to make concrete predictions like the CMB-spectrum [Str06], but
lacking physical motivation, and the states of low (free-)energy [Olb07, Küs08] with nice
motivation, which are however not easy to handle (though this is not entirely impossible,
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see [DV09]).
To be able to carry out this construction, we first have to introduce the formalism that

connects the concepts of Wick products, defined in terms of the Hadamard parametrix
as a series in the geodesic separation, to renormalized integrals over mode functions.
While of course this idea is not new and in some form has been around under the
name of “adiabatic renormalization” for a long time [PF74, Bir78, BD84] to calculate
expectation values of the stress-energy tensor, it seems that this connection has not yet
been systematically investigated1 . This is why many of the calculations in this chapter
are actually significantly more general than is required for the final construction of LTE-
states; it is hoped that the formulas obtained for the computation of covariant Wick
products and the statements on the general structure of Hadamard states on Cauchy
surfaces, which to some extent can be seen to complement the more abstract approach
in [JS02], might be of use to those using quantum fields on Robertson Walker spacetimes
in more concrete settings and might convince them of the usefulness of these concepts.
This is also the reason why the formulas are applied to a concrete example, namely (a
part of) de Sitter spacetime (which is relevant as a simple starting point for inflationary
models in cosmology [Str06]). There one discovers that the necessary conditions for
Hadamard states derived can be solved explicitly to all orders, and even though the
state obtained in the end is well known (it is the SO(4,1)-symmetric Hadamard state on
this spacetime), this shows the usefulness of the conditions.
We start by two sections in which the structure of the spacetime under consideration

is used, together with the fact that Gsk is “almost” a bi-solution of the Klein-Gordon
equation, to reduce the calculation of Wick products (here and in the following always
involving two field operators) to Wick products only containing at most one derivative
wrt. η and one wrt. η′.
Next, we investigate the relation of the functions vj appearing in the Hadamard para-

metrix to those on Minkowski spacetime; the result is what one would intuitively expect
(and was in fact used without comment in [Pir93]). The main result is a recursion
relation which provides an alternative to the iteration procedure in the construction
of adiabatic vacua, which seems to be rather simpler to use for concrete spacetimes.
After a section collecting relations needed in the following, we then come to the core
of the “generalized adiabatic renormalization” proposed here, namely the connection of
the Hadamard parametrix restricted to a surface of constant conformal time to integrals
mimicking those of the restricted two-point function. In contrast to the original adiabatic
renormalization, where the functions appearing in these integrals where limited to sums
of terms of the form (A + p2)−k+1/2 or terms obtained from the iteration procedure in
the construction of adiabatic vacua, we here allow arbitrary, symmetric functions with
the right asymptotics, which also makes it once more clear that it is really just the
asymptotics of adiabatic vacua which has any significance.
Using these results, we are then in a position to make a remark on the general structure

1[Pir93] is an exception, but on the one hand no emphasis is put on explicit formulas for the calculations
of expectation values there, on the other hand, some of the claims made there are probably wrong
(at least in the given formulation).
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of Hadamard states on the spacetimes considered here; at this point we will also point out
an interesting question arising in the explicitly constructing of candidates of Hadamard
states and then illustrate the result in the concrete example of de Sitter spacetime. After
that we will return to the calculation of expectation values of Wick products, and it is
here that we will introduce the functions from “conventional” adiabatic renormalization,
already mentioned above, as one possible choice. For these we then work out all the
formulas required to calculate the expected values of the thermal observables.
Finally, with all this technology in place, we will come to the construction of LTE states

on a surface of constant cosmological time, which will again be illustrated by continuing
the example of de Sitter spacetime and we will end this section by (somewhat heuristic)
remarks on the behaviour of states constructed in this way for high temperatures.
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5 On the existence of locally thermal states

5.1 Reduction of the problem using the Klein-Gordon operator
5.1.1 Pm,ξ and the Hadamard parametrix
By a direct calculation using gab(∇aσ)∇bσ = −4σ from remark 2.2, one sees that the
recursion relations for the vj appearing in the definition of the Hadamard parametrix
imply that on applying the Klein-Gordon operator Pm,ξ to Gsk there remains a function
with a singularity of the type σk log(σ); more precisely

Pm,ξGsk =
Pm,ξvk
4π2L2

(
σ

L2

)k
log

(
σ
L2

)
(5.1.1)

+ 1
4π2L4

k−1∑
j=0

(
2gab(∇aσ)∇bvj+1 + (�σ − 8j − 4)vj+1

)( σ

L2

)j

=
Pm,ξvk
4π2L2

(
σ

L2

)k
︸ ︷︷ ︸

=:Fl,G,k

log
(
σ
L2

)
− 1

4π2L4

k−1∑
j=0

(
4(j + 1)vj+1 + L2

j + 1
Pm,ξvj

)(
σ

L2

)j
︸ ︷︷ ︸

=:Ff,G,k

.

(5.1.2)
Since this holds for all x′ in a geodesic neighbourhood, we can differentiate wrt x′ and
obtain

Pm,ξ∂µ′Gsk = 1
4π2L4

(
σ(Pm,ξ∂µ′vk) + k(∂µ′σ)vk

)
︸ ︷︷ ︸

=:Fµ′,l,G,k

(
σ

L2

)k−1
log

(
σ
L2

)

+
Pm,ξvk
4π2L4 (∂µ′σ)

(
σ

L2

)k−1

− 1
4π2L4

k−1∑
j=0

[
4(j + 1)∂µ′vj+1 + L2

j + 1
Pm,ξ∂µ′vj

+ j
∂µ′σ

σ

(
L2

j + 1
Pm,ξvj + 4(j + 1)vj+1

)](
σ

L2

)j
=:Fµ′,l,G,k

(
σ

L2

)k−1
log

(
σ
L2

)
+ Fµ′,f,G,k , (5.1.3)

so upon applying Pm,ξ to ∂µ′Gsk we end up with a term whose singularity is of type
(∂µ′σ)σk−1 log(σ).
From this, we can also infer the result of repeated application of the Klein-Gordon op-

erator on Gsk and ∂µ′Gsk for k sufficiently large, which will then be used for the translation
of time-derivative to spatial derivatives.
Lemma 5.1. Let the Hadamard parametrix Gsk of order k be given as above and let
0 < n ≤ k, n ∈ N. Then Pnm,ξGsk and Pnm,ξ∂µ′Gsk+1 can be written as

Pnm,ξGsk =F1σ
k+1−n log

(
σ
L2

)
+ F2

Pnm,ξ∂µ′Gsk+1 =F3σ
k+1−n log

(
σ
L2

)
+ F4
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with smooth functions F1, F2, F3 and F4.

Proof. Using (5.1.2) we first get

Pnm,ξGsk = Pn−1
m,ξ

(
Fl,G,k

(
σ

L2

)k
log

(
σ
L2

)
+ Ff,G,k

)
(5.1.4)

and by (5.1.3):

Pnm,ξ∂µ′Gsk+1 = Pn−1
m,ξ

(
Fµ′,l,G,k+1

(
σ

L2

)k
log

(
σ
L2

)
+ Fµ′,f,G,k+1

)
. (5.1.5)

We therefore need to investigate expressions of the form Plm,ξ
(
F5σ

k log
(
σ
L2

)
+ F6

)
where

0 ≤ l < k and F5 and F6 are smooth functions. Using gab(∇aσ)∇bσ = −4σ we have

Pm,ξ
(
F5σ

k log
(
σ
L2

)
+ F6

)
=(� +m2 + ξR)

(
F5σ

k log
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σ
L2

))
+ Pm,ξF6

=
[
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+ F5
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σ
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+ F5 (�σ + 4)σk−1 + Pm,ξF6 ,

which is of the form F7σ
k−1 log

(
σ
L2

)
+ F8 with smooth functions F7 and F8, so by

induction we get

Plm,ξ
(
F5σ

k log
(
σ
L2

)
+ F6

)
= F1σ

k−l log
(
σ
L2

)
+ F2 (5.1.6)

and combining this with (5.1.4) respectively (5.1.5) the claim follows.

5.1.2 Reduction of orders
The requirement of being of Hadamard type for a quasi-free state ω involves the continu-
ity of all the partial derivatives of the symmetric, regularized two-point functions W SHP

ω,k .
In this section we will show that the question of continuity of the partial derivatives can
be reduced for Robertson Walker spacetimes to the investigation of partial derivatives
of at most second order in η and η′ by using the Klein-Gordon equation.
First we need a little lemma

Lemma 5.2. Let L = an∂
n
η f + . . .+ a1∂η + a0 be an n-th order differential operator in

η on MRW(Î , C), ak : MRW(Î , C)→ R smooth functions. Then L can be written as

L =

RnP
n/2
m,ξ +Rn−1∂ηPn/2−1

m,ξ + . . .+R1∂η +R0 n even
Rn∂ηP(n−1)/2

m,ξ +Rn−1P(n−1)/2
m,ξ + . . .+R1∂η +R0 n odd
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where Rk is a differential operator of order 2
⌊
n−k

2

⌋
2 in r.

Proof. By induction: For n = 0, 1 the claim is evidently true with R0 = a0 and R0 = a0,
R1 = a1 respectively.
n→ n+ 1: Using
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(
n− 1
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)(
∂kηR

)
∂n−1−k
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we can write L as

L =Can+1∂
n−1
η Pm,ξ − Can+1L1 + Can+1

(
∂rr + 2

r
∂r

)
L2 − ξCan+1L3 +

n−1∑
k=0

ak∂
k
η .

L1 is a differential operator in η of order n whereas L2 and L3 are differential operators
in η of order n−1 so inserting the induction hypothesis we get the claimed representation
of L.

With the help of this preparation we can now show that, as far as the singular part of
Gsk is concerned, one can indeed reduce derivatives wrt η and η′ to at maximum second
order derivatives at the cost of higher order spatial derivatives. The same reduction can
be done for the (symmetrized) two-point function W ω,s

2 ; since this is even a bi-solution
of the Klein-Gordon equation the reduction works without the appearance of additional,
finite terms.
From here on we will again only be concerned with the homogeneous and isotropic

Hadamard parametrix Gsk and two-point function W ω,s
2 , by lemma 2.4 determined by

distributions G̃sk and W̃ ω,s
2 . On these the Laplace operator ∂xx + ∂yy + ∂zz appearing in

Pm,ξ acts as ∂rr + 2
r∂r. The same also holds true for the Laplace operator acting on x′,

which appears in P′m,ξ.

2b·c denotes the (lower) Gauss bracket, i.e. for x ∈ R bxc is the biggest integer not greater than x
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Lemma 5.3. For l, l′, n ∈ N such that l + l′ + n ≤ k there holds
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η′∂

n
r G̃sk = D(ηη′)∂η∂η′ G̃sk +D(η)∂ηG̃sk +D(η′)∂ηG̃sk +D()G̃sk + F̃l,l′,nσ̃ log
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r and R̃l,l′,n, F̃l,l′,k are the symmetry-reduced versions of smooth function Rl,l′,n, Fl,l′,k
on the convex normal set N where G̃sk is defined. Furthermore, for the symmetrized
two-point function W̃ ω,s

2 we have

∂lη∂
l′
η′∂

n
r W̃ ω,s

2 = D(ηη′)∂η∂η′W̃
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2 +D(η)∂ηW̃
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2 +D(η′)∂ηW̃
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Proof. Consider the case l, l′ even and assume wlog l ≥ l′. By the preceding lemma 5.2
we have
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η′∂

n
r G̃sk = ∂nr ∂
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m,ξ + . . .+R1∂η +R0

)
G̃sk , (5.1.7)

which by lemma 5.1 can be written as

∂lη∂
l′
η′∂

n
r G̃sk =∂nr ∂l

′
η′Rl

(
Fl,1σ̃

k+1−l/2 log
(
σ̃
L2

)
+ Fl,2

)
+ ∂nr ∂

l′
η′Rl−1

(
Fl−1,1σ̃

k+2−l/2 log
(
σ̃
L2

)
+ Fl−1,2

)
...
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η′ G̃sk , (5.1.8)

where the interchange of ∂l′η′ and R1 and R0 is permissible, since the latter only involve η
and r. By the symmetry of G̃sk, the relations (5.1.2) and therefore lemma 5.1 also hold for
differentiation wrt the second argument, so for the terms ∂nrR1∂

l′
η′∂ηG̃sk and ∂nrR0∂

l′
η′ G̃sk

we can write
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)

...
+ ∂nrR1S1∂η∂η′ G̃sk + ∂nrR1S0∂ηG̃sk (5.1.9)

and
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...
+ ∂nrR0S1∂η′ G̃sk + ∂nrR0S0G̃sk (5.1.10)

75



5 On the existence of locally thermal states

(P′m,ξ denotes the Klein-Gordon operator acting on x′). Setting D(ηη′) = ∂nrR1S1,
D(η) = ∂nrR1S0, D(η′) = ∂nrR0S1 and D() = R0S0 it remains to show that all the terms
where differential operators act on products σ̃m log σ̃, m ≥ 1 actually can be written as
fσ̃ log σ̃+h with smooth functions f and h. First looking at (5.1.8) we have differential
operators of order no bigger than n+l′+(l−s) acting on terms σ̃k+1−b s2c log σ̃ multiplied
with a smooth function for 0 ≤ s ≤ l. In the equations (5.1.9), we have differential op-
erators of order no bigger than n+ l− 2 + l′− s acting on terms σ̃k−b

s
2c log σ̃ multiplied

with a smooth function for 0 ≤ s ≤ l′ and in (5.1.10) differential operators of order
no bigger than n + l + l′ − s acting on terms σ̃k+1−b s2c log σ̃ multiplied with a smooth
function for 0 ≤ s ≤ l′.
Since acting with a differential operator on the term σ̃k log σ̃ will lead to a term

fσ̃k−1 log σ̃ + f ′ with smooth functions f and f ′, i.e. reduces the power of σ̃ in front
of the logarithm only by one, for k ≥ l + l′ + n the logarithmic terms remaining in
(5.1.8)-(5.1.10) all have a prefactor of at least σ̃, showing the first part of the claim.
Concerning the symmetrized two-point function W̃ ω,s

2 , replacing in (5.1.7) the sym-
metrized Hadamard Parametrix G̃sk by W̃ ω,s

2 , which is a bi-solution of the Klein-Gordon
equation, we get
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k
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2 +R0W̃
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2

Performing the same procedure with the η′-derivatives we then end up with the claimed
expression for W̃ ω,s

2 .
For the other cases l odd l′ even, l′ odd l even and l, l′ both odd the calculations work

completely analogously.

Since we will need this term in the following and to illustrate the preceding procedure,
let us calculate ∂ηη

(
W̃ ω,s

2 − G̃sk
)
. First we have
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(
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,

so the operators R0, R1 and R2 are here given by

R0(η) =∂rr + 2
r
∂r − C(η)

(
m2 + ξR(η)

)
R1(η) =− C ′(η)

C(η)
R2(η) =C(η) .

For the renormalized, symmetric part of the two-point function W̃ SHP
ω,k = W̃ ω,s

2 − G̃sk this
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yields

∂ηηW̃
SHP
ω,k =− C ′

C
∂ηW̃

SHP
ω,k +

(
∂rr + 2

r
∂r − C(m2 + ξR)

)
W̃ SHP
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+ C

4π2L2

(
4 ṽ1
L2 + Pm,ξ ṽ0

)
+ o(1) , (5.1.11)

where o(1) denotes terms that go to zero for σ → 0.
Since the (local) Hadamard condition (see definition 2.3) is formulated as the require-

ment that in each geodesically convex domain the function W SHP
ω,k is Ck, in principle

to establish that a homogeneous and isotropic state on Robertson Walker spacetime is
Hadamard, one would have to check the continuity of all the functions ∂nr ∂lη∂l

′
η′W̃

SHP
ω,k .

By the above and the symmetry of W̃ SHP
ω,k it is however sufficient to actually check the

continuity of ∂lr∂η∂η′W̃ SHP
ω,k , ∂lr∂ηW̃ SHP

ω,k and ∂lrW̃ SHP
ω,k for all l ∈ N.

Concerning calculations, by going over to the modified “time-derivatives” D and D′
introduced in section 2.2.4 and rewriting the differential operator

D(ηη′)∂η∂η′ +D(η)∂η +D(η′)∂η′ +D()

where the D(·) are the differential-operators in r from lemma 5.3 as

D
(ηη′)
D DD′ +D

(η)
D D +D

(η′)
D D

′ +D() ,

we can finally reduce the calculations of expressions ∂nr ∂lη∂l
′
η′W

SHP
ω,k to the calculation of

the expressions D(ηη′)
D DD′W̃ SHP

ω,k , D(η)
D W̃ SHP

ω,k and D()
DW̃ SHP

ω,k .
Still, a priori this needs to be checked on a family of geodesically convex normal

neighbourhoods coveringMRW(Î , C); by translational invariance and preservation of the
Hadamard property under time-evolution [FSW78] it is sufficient to check the property
in a single, geodesically convex neighbourhood N , but this is still a four-dimensional
subset of M . A necessary condition for a state to be Hadamard is the requirement
that the restrictions

[
W SHP
ω,k

]
η=η′

,
[
DW SHP

ω,k

]
η=η′

,
[
DD′W SHP

ω,k

]
η=η′

to a (Cauchy-)surface

of constant η are Ck (in intersections of N with the surface) for all k. Since this is a
requirement on the initial values of the two-point function, and the two-point function is
in turn determined by its values and the values of its first and second time-derivative on
a Cauchy surface, one suspects that this is in fact equivalent to the Hadamard property.
We now want to sketch an argument, why this should in fact be true; to turn this
into a rigorous proof, more information about the precise regularity of solutions to the
Klein-Gordon equation on Robertson Walker spacetimes, depending on initial values and
parameters, would be needed.
First note that for a surface Sη0 := {η0} × R3 ⊂MRW(Î , C) of constant η = η0 and a

geodesically convex neighbourhood N of x ∈ Sη0 , a neighbourhood ]η, η′[×R3 of Sη0 can
be covered by taking (denumerably many) copies of N translated within Sη0 and this
can even be done in such a way, that SN is covered by translates of the sets D(N ∩Sη0),
with D(·) denoting the Cauchy development of a set [BGP07] (this is sketched in fig-
ure 5.1). By translational invariance of the state and the Hadamard parametrix, W SHP

ω,k
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N

ηD(N   S  )
0

η 0

η

η ’

x

Figure 5.1: N and a translate, drawn with dashed lines

is identical on each translates of N × N , so it suffices to check whether it is Ck on
D(N ∩ Sη0)2. By the results of this section, we know that W SHP

ω,k satisfies the inhomo-
geneous Klein-Gordon equation Pm,ξW SHP

ω,k = −Pm,ξGsk, P′m,ξW SHP
ω,k = −P′m,ξGsk, where the

right-hand side is a Ck function on N . But if we are given Ck-restrictions
[
W SHP
ω,k

]
η=η′

,[
DW SHP

ω,k

]
η=η′

and
[
DD′W SHP

ω,k

]
η=η′

, first for each value x of the first argument of W SHP
ω,k in

Sη0 we can solve the two Cauchy-problems P′m,ξW SHP
ω,k = −P′m,ξGsk (in the inhomogeneity,

the first argument is also fixed as x) with the initial data
[
W SHP
ω,k

]
η=η′

,
[
D′W SHP

ω,k

]
η=η′

respectively
[
DW SHP

ω,k

]
η=η′

and
[
DD′W SHP

ω,k

]
η=η′

(on D(N ∩ Sη0) there exists a unique
solution [BGP07]), to obtain two functions Sη0 × D(N ∩ Sη0) 3 (x, x′) 7→ W SHP

ω,k (x, x′)
and Sη0 × D(N ∩ Sη0) 3 (x, x′) 7→ DW SHP

ω,k (x, x′). Since the initial values on Sη0 and
the inhomogeneities were assumed to be Ck, this should be a Ck functions in x and
x′. Now considering for these functions the second argument x′ as fixed, they can be
used as initial data defining the Cauchy problem Pm,ξW SHP

ω,k = −Pm,ξGsk (where in the
inhomogeneity now the second argument is fixed to x′); since this again has a unique
solution and the initial data and the inhomogeneity where Ck, we should get for each
x′ a Ck-function on D(N ∩ Sη0) and allowing x′ to vary, we get via the dependence of
the initial values on x′ a Ck function on D(N ∩ Sη0)×D(N ∩ Sη0), which is just W SHP

ω,k

on this set. We are then in the situation to apply the results from [FSW78] to conclude
that the state is a (global) Hadamard state.
As a final remark, note that for the spacetimes at hand this construction can actually

be made more explicit, since we can get representation formulas for solutions of the
inhomogeneous Cauchy problem using the (spatial) Fourier transform similar to those
for the Greens-operators from appendix A.1. The differentiability question could then
be investigated using this representation.

5.2 Relation to flat spacetime

Since the spacetimes under consideration are conformally equivalent to flat spacetime,
which in turn implies that the wave-operator � is closely related to that on flat spacetime,
and since the requirement that Pm,ξGk is zero up to a term of order σk log σ, which was
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5.2 Relation to flat spacetime

used in the last section, can actually also be used to derive the relations (2.1.2)-(2.1.4),
one can expect that also the functions ∆1/2 and vj are closely related to those on flat
spacetime. In this section it will be shown that this is indeed the case; more precisely
we have

∆1/2

q
= 1
Dηη′

(1 + ρR∆) (5.2.1)

v(k) = 1
Dηη′

 k∑
j=0

ρj
o
vj + ρk+1Rv

 , (5.2.2)

where Dηη′ :=
√
C(η)C(η′) and the o

vj are determined by a recursion relation which is
almost the one determining the corresponding coefficients on flat spacetime only that
the “mass-term” appearing is now η-dependent. Furthermore, the small-distance asymp-
totics of the function R∆ will be given to the order needed to calculate the Wick products
appearing later on.
Introducing

o
� = ∂ηη −

∑3
j=1 ∂xjxj , one calculates for an f ∈ C∞(N):

�
f(η,x, η′,x′)

Dηη′
= 1
Dηη′

 o
�

C(η)
− R(η)

6

 f(η,x, η′,x) (5.2.3)

Using this,
2gab(∇aσ)∇bf + (�σ + 8)f = �(σf)− σ�f (5.2.4)

and introducing
o
∆1/2(η, η′, r) =

Dηη′∆̃1/2(η, η′, r)
q̃(η, η′, r)

, (5.2.5)

(2.1.2) implies
o
�
(
q
o
∆1/2

)
− ρq

o
�

( o
∆1/2

ρ

)
= 0 . (5.2.6)

Using (5.2.4) once more, this time for Minkowski spacetime and denoting the Minkowski
metric again by ε, we end up with

2εµν(
o
∇µρ)

o
∇ν

o
∆1/2 + ρ

q

(
2εµν(

o
∇µq)

o
∇ν

o
∆1/2 + (

o
�q)

o
∆1/2

)
= 0 . (5.2.7)

Along the lightlike geodesics ρ = 0 (which are characteristic curves for (5.2.7)) this
agrees precisely with the equation for ∆1/2 on Minkowski spacetime, furthermore by
q̃(η, η, 0) = C(η) the initial condition

o
∆1/2(η, η, 0) = 1 agrees with the one on Minkowski

spacetime, so for ρ = 0 also
o
∆1/2 on Robertson Walker is equal to one. Therefore

o
∆1/2−1

is a smooth function which vanishes on (N × N) ∩ V and can thus by Lemma 2.5 be
written as

o
∆1/2 = 1 + ρR∆ where R∆ is a smooth function on N . Inserting this into
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5 On the existence of locally thermal states

(5.2.5) we see that ∆1/2 indeed has the form claimed in (5.2.1) and using (5.2.7), we
obtain for R∆ the equation

2εµν
o
∇µ(qρ)

o
∇νR∆ +

(
2εµν(

o
∇µq)

o
∇νρ+ ρ

o
�q − 8q

)
R∆ = −

o
�q (5.2.8)

which yields for x→ x′ the identity

[qR∆](η,x)=x=x′ = C(η′) [R∆]x=x′ =
[ o

�q
8

]
x=x′

, (5.2.9)

i.e. the initial values for R∆.
Since R∆ only appears in ∆1/2 multiplied by a prefactor of σ, it does not contribute to
the singular part of Gk; it does however give a contribution to its finite part and therefore
the asymptotic behaviour for x→ x′ is needed.
The small distance expansion (2.2.6) for q̃ can now be used together with the initial

condition (5.2.9) to calculate the asymptotic expansion for R∆ by (5.2.8). The result to
second order for the symmetry-reduced function R̃∆ is

R̃∆(η, r) = C(η′)R(η′)
72

+ (CR)′ (η′)
144

(η − η′)

+
[
(CR)′′(η′)− 3

4

(
C ′′(η′)
C(η′)

)2
+ C ′′(η′) (C ′(η′))2

C3(η′)
− 3

8

(
C ′(η′)
C(η′)

)4] (η − η′)2

480

+
[
15
8

(
C ′(η′)
C(η′)

)4
− 11

3
C ′′(η′) (C ′(η′))2

C3(η′)
+ 3

4

(
C ′′(η′)
C(η′)

)2
+ C ′(η′)C ′′′(η′)

C2(η′)

]
r2

480
+ . . .

Concerning the vj coefficients, introduce u0 by

u0 = Dηη′v0 .

Using

2gab(∇aσ)∇bv0 + (4 + �σ)v0 =σ (�(v0 log σ)− (�v0) log σ)

=2qεµν(
o
∇µρ)

o
∇νu0 − 4qu0 + ρ

(
o
�q − εµν(

o
∇µq)

o
∇νq

q

)
u0

and the representation (5.2.1) for ∆1/2 together with (5.2.6), the equation (2.1.2) for v0
implies for u0:

εµν(
o
∇µρ)

o
∇νu0 − 4u0 + ρ

q

(
o
�q − εµν(

o
∇µq)

o
∇νq

q

)
u0 = −L2

(
Qm,ξ + ρ

o
Pm,ξR∆

)
, (5.2.10)

where
o
Pm,ξ :=

o
� +Qm,ξ

Qm,ξ :=
(
m2 +

(
ξ − 1

6

)
R
)
C
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5.2 Relation to flat spacetime

were introduced. The partial differential equation (5.2.10) again has geodesics as char-
acteristic curves, so can be reduced to ordinary differential equations along these; along
lightlike geodesics they precisely coincide with the equations obtained from the partial
differential equation

εµν(
o
∇µρ)

o
∇ν

o
v0 − 4ov0 = −L2Qm,ξ . (5.2.11)

Since the requirement of finiteness for coinciding arguments fixes u0 uniquely this implies
that u0 agrees on V with a solution o

v0 to (5.2.11) if ov0 is also required to remain finite
for coinciding arguments.
Thus, defining the functions o

vj as the unique, bounded solutions to the recursion
relations

2εµν(
o
∇µρ)

o
∇ν

o
v0 − 4ov0 = −L2Qm,ξ (5.2.12)

2(j + 1)εµν(
o
∇µρ)

o
∇ν

o
vj+1 − 4(j + 1)(j + 2)ovj+1 = −L2 oPm,ξ

o
vj (5.2.13)

and o
v

(k)
by

o
v

(k)
= 1
Dηη′

k∑
j=0

ρj
o
vj ,

we have
o
v

(k)
|V = v(k)|V .

The Hadamard recursion relations (2.1.4) imply Pm,ξv(k) = (Pm,ξvk)σk, i.e. v(k) solves
the Klein Gordon equation up to a term that vanishes like σk when approaching the
“light-cone” V . On the other hand, since (5.2.12) and (5.2.13) are exactly the Hadamard
recursion relations on Minkowski spacetime except for the η-dependent “mass term”
Qm,ξ, it follows by the same argument that the function

o
Pm,ξ

(∑k
j=0 ρ

j ovj
)
is a term

which for ρ→ 0⇔ σ → 0 is of order ρk ⇔ σk. The following lemma, formulated for the
spacetimes under consideration, shows that these two requirements in fact already imply
that v(k) and o

v
(k)

agree up to a function that vanishes like σk+1 when approaching V .

Lemma 5.4. For functions f1, f2 ∈ C2k+2
ih (N), satisfying Pm,ξf1 = r1σ

k, Pm,ξf2 = r2σ
k

and v1|V = v2|V there exists a neighbourhood U ⊂ N of the diagonal x = x′ and
continuous function r3 on U such that

f1 − f2 = r3σ
k+1 .

Proof. By induction. For k = 0, applying lemma 2.5 to r1 − r2, which vanishes due to
the assumption r1|V = r2|V , we get r1 − r2 = ρr̃3 and by choosing r3 = r̃3q, where U is
chosen such that q is positive on U (we already know that q(x, x) > 0) we get the claim.
For the induction step, note that Pm,ξf1 = r1σ

k+1, Pm,ξf2 = r2σ
k+1 implies first by the

induction hypothesis f1 − f2 = r̃3σ
k+1 and this in turn leads to

�(f1 − f2) =σk+1�r̃3 + 2(k + 1)σkgab(∇σa)∇br̃3 + 2(k + 1) [�σ − 4k] r̃3σk

=− (m2 + ξR)r̃3σk+1 + (r1 − r2)σk+1 .

81



5 On the existence of locally thermal states

Dividing by (k + 1)σk and restricting to V we get

2gab(∇aσ)∇br̃3 + [�σ − 4k] r̃3 = 0 .

By the second point of remark 2.2, gab∇bσ(x, x′) is at x tangential to the light-like
geodesic through x′ and x and its (euclidean) modulus provides an affine parametrization
of this geodesics3, we can reduce the equation on V by the method of characteristics to
the ordinary differential equation

−4λ˜̃r′3(λ) +
[
�̃σ(λ)− 4k

]
˜̃r3(λ) = 0 (5.2.14)

for ˜̃r3, �̃σ defined by r̃3(x, x′)= ˜̃r3(‖∇σ(x, x′)‖/2) and (�σ)(x, x′) = �̃σ(‖∇σ(x, x′)‖/2).
Using �σ|V = −8, we see that the initial values for the ODE (5.2.14) is ˜̃r3(0) = 0, but
this leads to

˜̃r′3(λ) =
[
�̃σ(λ)/4− k

] ˜̃r3(λ)− ˜̃r3(0)
λ

.

Now since �̃σ(0)/4 = −2, we can choose a neighbourhood Ũ of 0 such that �̃σ/4− k is
negative on Ũ (even independent of k) and by the mean value theorem we get that ˜̃r3
has to be zero on Ũ , therefore r̃3 is zero on U ∩ V , U a neighbourhood of x = x′, and
by lemma 2.5 we can write r̃3 as r̃3 = σr3, i.e. f1 − f2 = σk+1σr3.

This means that the functions ∆1/2 and v(k) appearing in the Hadamard parametrix
can be related to functions obtained by solving the Hadamard recursion relations for
the Minkowski Klein-Gordon operator with a time-dependent mass up to two remainder
terms. For the first remainder term R∆, the short distance asymptotics can be calculated
using (2.2.5) and (5.2.8); the other remainder term does not contribute to coincidence
limits when k is sufficiently large. Since its regularity grows with k, it also is not
relevant in discussions of regularity, so besides R∆ only the terms

o
∆1/2 and o

vj enter into
the Hadamard condition and covariant Wick products. It is thus sufficient to solve the
recursion relations (5.2.12), (5.2.13) instead of the full recursion relations for ∆1/2 and
vj ; once more making use of the methods of characteristics, it is then easily seen that
the o

vj only depend on η and η′.
For their coincidence limits η → η′ we get from (5.2.12), (5.2.13):[

∂lη
o
v0(η, η′)

]
η=η′

= L2

4(l + 1)
∂lηQm,ξ(η) (5.2.15)

[
∂lη

o
vj+1(η, η′)

]
η=η′

= L2

4(j + 1)(j + 2 + l)

[
∂l+2
η

o
vj(η, η′) + ∂lη

(
Qm,ξ(η)

o
vj(η, η′)

)]
η=η′

.

(5.2.16)

For given C and R, these are recursion relations that allow the calculation of
[
∂lη

o
vj
]
η=η′

purely from Qm,ξ; they get especially simple for the case of conformal coupling where
Qm,ξ is given by Qm,1/6 = m2C.

3This can, for the spacetimes at hand, be seen by using the representation σ = qρ and ∂η ρ̃ = −2(η−η′),
∂rρ̃ = −2r
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5.3 The generalized adiabatic renormalization

In the following, expressions for
[
o
v0
]
η=η′

,
[
∂η

o
v0
]
η=η′

,
[
∂ηη

o
v0
]
η=η′

and
[
o
v1
]
η=η′

will be
needed; using the recursion relations they are calculated as

[
o
v0(η, η′)

]
η=η′

=L
2Q(η)

4
(5.2.17)[

∂η
o
v0(η, η′)

]
η=η′

=L
2Q′(η)

8
(5.2.18)[

∂ηη
o
v0(η, η′)

]
η=η′

=L
2Q′′(η)
12

(5.2.19)[
o
v1(η, η′)

]
η=η′

=L
2

8

[
∂ηη

o
v0(η, η′) +Q(η)ov0(η, η′)

]
η=η′

(5.2.20)

=L4Q
′′(η)/3 +Q2(η)

32
. (5.2.21)

As a first application, we can calculate the finite term RPm,ξ := C
4π2L2

(
4 v1
L2 + Pm,ξv0

)
,

which appeared at the end of the preceding section in the reduction of second order
η-derivatives to first order ones as:

RPm,ξ = [−C Pm,ξGsk]x=x′ (5.2.22)

−CPm,ξGsk =− 1
4π2Dηη′

o
Pm,ξ

[1
ρ

+ 1
L2

k∑
j=0

(
ρ

L2

)j
o
vj log

(
ρ
L2

)
+R∆

+ 1
L2

k∑
j=0

(
ρ

L2

)j
o
vj log(q) + ρk+1

L2(l+2)Rv log
(
σ
L2

) ]

= 1
4π2L2Dηη′

(
4
o
v1
L2 +

o
Pm,ξ

o
v0 − L2 oPm,ξR∆ −

o
Pm,ξ

((
o
v0 + ρ

L2
o
v1

)
log q

))
+ o(1) (5.2.23)

5.3 The generalized adiabatic renormalization
5.3.1 Strategy for the introduction of “momentum-space” renormalization
The (state-dependent part) of expectation values of covariant Wick squares of the field
and its derivatives in Hadamard states are given by expressions of the form[

∂kr ∂
l
η∂

l′
η′W̃

SHP
ω,k

]
η=η′,r=0

Abbreviating w̃(ηη′) := D
(ηη′)
D DD′W̃ SHP

ω,k , w̃(η) := D
(η)
D DW̃ SHP

ω,k and w̃() := D
()
DW̃ SHP

ω,k , by
the above discussion on Robertson Walker spacetimes their calculation can be reduced
to the calculation of coincidence limit

[
w̃(ηη′)

]
η=η′,r=0

,
[
w̃(η)

]
η=η′,r=0

and
[
w()
]
η=η′,r=0

.
Furthermore, we can restrict Gsk, DGsk, and DD′Gsk as distributions to the partial diagonal
η = η′. For a Hadamard state, W ω,s

2 differs from Gsk by a Ck function, so this also holds
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5 On the existence of locally thermal states

true for W ω,s
2 ; furthermore, since taking r-derivatives and restricting to η = η′ commutes,

this also holds true for w(ηη′), w(η) and w().
The strategy to compute wj , j ∈ {(ηη′), (η), ()} is now

1. Restrict wj to the partial diagonal η = η′. One obtains a distribution in r, which
is a difference of two distributions, the first given by a regularized integral and the
second by a (regularized) asymptotic series expansion in r.

2. Rewrite the second term as an integral expression of a form similar to the first term
plus a sufficiently often differentiable remainder term, depending on r. Combine
the two integral expressions into one (which is finite for all r without regulariza-
tion).

3. Now perform the r-derivatives on the obtained integral expression and the remain-
der term and finally set r equal to zero. One ends up with an expression of the
expectation values as a sum of a one-dimensional integral and some η-dependent,
finite term.

First we collect the expressions for the Hadamard parametrix and its first two “time”-
derivatives restricted to a surface of constant conformal time in coordinate space.
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5.3.2 Coordinate space expressions for [Gsk]η=η′, [DGsk]η=η′, [DD′Gk]η=η′
Using (5.2.1), (5.2.2) and Lemma 2.7 we get:

[Gsk]η=η′ =
1

4π2C(η)

(
1
r2+

+ [R∆]η=η′ +
1
L2

k∑
j=0

(
r2

L2

)j [
o
vj
]
η=η′

lo0

+ 1
L2

k∑
j=0

(
r2

L2

)j [
o
vj log(q)

]
η=η′

+
[
ρk+1Rv log σ

]
η=η′

)

[DGsk]η=η′ =
1

4π2C(η)

(
1
L2

k∑
j=0

(
r2

L2

)j [
∂η

o
vj
]
η=η′

lo0 + [∂ηR∆]η=η′

+ 1
L2

k∑
j=0

(
r2

L2

)j ([
∂η

o
vj log(q)

]
η=η′

+
[
o
vj
∂ηq

q

]
η=η′

)

+
[
∂η
(
ρk+1Rv log σ

)]
η=η′

)

[
DD′Gsk

]
η=η′ =

1
4π2C(η)

{
− 2 1

r4+
+ 2

[
o
v0
]
η=η′

L2
1
r2+

+ 1
L2

 k∑
j=0

(
r2

L2

)j[
∂η∂η′

o
vj
]
η=η′

+ 2
L2

k−1∑
j=0

(j + 1)
(
r2

L2

)j[
o
vj+1

]
η=η′

 lo0

+ 2
L4

k−1∑
j=0

(
r2

L2

)j [
o
vj+1

]
η=η′

+ 1
L2

k∑
j=0

 2j
L2

(
r2

L2

)j−1 [
o
vj
]
η=η′

+
(
r2

L2

)j [
∂ηη′

o
vj
]
η=η′

 [log q]η=η′

+ 1
L2

k∑
j=0

([
(∂ηq)∂η′

o
vj + (∂η′q)∂η

o
vj

q

]
η=η′

+
[(
∂ηη′q

q
−

(∂ηq)∂η′q
q2

)
o
vj

]
η=η′

)(
r2

L2

)j

+
[
∂ηη′R∆

]
η=η′ +

[
∂ηη′

(
ρk+1Rv log(σ)

)]
η=η′

}
.

Introducing

P
()
0 (η) =1

Q
()
j (η) =

[
o
vj
]
η=η′

L2

R
()
Gk(η) = [R∆]η=η′ +

1
L2

k∑
j=0

(
r2

L2

)j [
o
vj log(q)

]
η=η′
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and

Q
(η)
j (η) =

[
∂η

o
vj
]
η=η′

L2

R
(η)
Gk (η) = [∂ηR∆]η=η′ +

1
L2

k∑
j=0

(
r2

L2

)j ([
∂η

o
vj log(q)

]
η=η′

+
[
o
vj
∂ηq

q

]
η=η′

)

P
(ηη′)
−1 (η) =− 2

P
(ηη′)
0 (η) =

2
[
o
v0
]
η=η′

L2

Q
(ηη′)
j (η) = 1

L2

([
∂ηη′

o
vj
]
η=η′

+ 2(j + 1)
L2

[
o
vj+1

]
η=η′

)
j = 0, . . . , k − 1

Q
(ηη′)
k (η) =

[
∂ηη′

o
vk
]
η=η′

L2

R
(ηη′)
Gk (η) = 1

L2

{
2
L2

k−1∑
j=0

(
r2

L2

)j [
o
vj+1

]
η=η′

+
k∑
j=0

 2j
L2

(
r2

L2

)j−1 [
o
vj
]
η=η′

+
(
r2

L2

)j [
∂ηη′

o
vj
]
η=η′

 [log q]η=η′

+
k∑
j=0

([
(∂ηq)∂η′

o
vj + (∂η′q)∂η

o
vj

q

]
η=η′

+
[(
∂ηη′q

q
−

(∂ηq)∂η′q
q2

)
o
vj

]
η=η′

)(
r2

L2

)j }
+
[
∂ηη′R∆

]
η=η′

they can be written as

[Gsk]η=η′ =
1

4π2C(η)

P ()
0 (η)
r2+

+
k∑
j=0

Q
()
j (η)

(
r2

L2

)j
lo0 +R

()
Gk(η)

+ o(σk) (5.3.1)

[DGsk]η=η′ =
1

4π2C(η)

 k∑
j=0

Q
(η)
j (η)

(
r2

L2

)j
lo0 +R

(η)
Gk (η)

+ o(σk) (5.3.2)

[
DD′Gk

]
η=η′ =

1
4π2C(η)

P (ηη′)
−1 (η)
r4+

+ P
(ηη′)
0 (η)
r2+

+
k∑
j=0

Q
(ηη′)
j (η)

(
r2

L2

)j
lo0 +R

(ηη′)
Gk (η)


+ o(σk−1) . (5.3.3)

This shows, that the overall singularity structure of [Gsk]η=η′ and [DGsk]η=η′ agrees (with
different smooth functions in front of the 1

r2+
and r2j lo0-terms) whereas [DD′Gsk]η=η′ has
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5.3 The generalized adiabatic renormalization

the additional singular term P
(ηη′)
−1
r4+

. The important observation is now, that terms with
such a singularity structure can be generated by integrals resembling those appearing in
the two-point function of homogeneous and isotropic states.

5.3.3 Corresponding integral expressions
To construct (regularized) integral expressions with the same singular part as (5.3.1)–
(5.3.3), the following lemma is useful:

Lemma 5.5. Let Ω : R → [1/m,∞[, m > 0, z ∈ Hr := {z ∈ C | Re (z) > 0} and the
asymptotic behaviour of Ω for p→∞ be given by:

Ω(p) =
k∑

j=−d

aj
pj

+O
( 1
pk+1

)
.

Then for L > 0, z ∈ Hr,
∫∞
0 e−pzΩ(t)dp can be written as

∫ ∞
0

e−pzΩ(p) dp =
d∑
j=0

j!a−j
zj+1 − Ek−1(z) ln

(
z

L

)
+ R̃

(k−1)
Ω,L (z)

Ek−1(z) =
k−1∑
j=0

(−z)jaj+1
j!

where R̃(k−1)
Ω,L is an analytic functions on Hr, such that the limit ε → 0 of the function

R
(k−1)
Ω,L,ε : R 3 r 7→ R̃

(k−1)
Ω,L (ε+ ir) in the sense of distributions is given by a Ck−1-function

R
(k−1)
Ω,L with asymptotic expansion

R
(k−1)
Ω,L (r) =

k−1∑
l=0

Rl
(−ir)l

l!
+ o(rk−1)

Rl = lim
M→∞

∫ M

0
pl

Ω(p)−
d∑
j=0

a−jp
j

 dp−
l∑

j=1

al+1−j
j

M j − al+1 log(ML)


+ al+1

(
− γ +

l∑
n=1

1
n

)
.

Proof. See appendix.

87



5 On the existence of locally thermal states

Consider now for ε > 0 the integral

WΩ,ε(x) = 1
(2π)3

∫
R3
e−pεeipxΩ(p)d3p

where p = ‖p‖. Introducing spherical coordinates in x direction (r := ‖x‖), this integral
can be reduced to

4π2WΩ,ε(x) = 1
ir

∫
R+
e−p(ε−ir)Ω(p)pdp− 1

ir

∫
R+
e−p(ε+ir)Ω(p)pdp . (5.3.4)

For comparison with (5.3.1)–(5.3.3), we need to look at the limits ε → 0 of WΩ,ε for
Ω whose asymptotic expansion starts with the linear term in p and only contains odd
powers of p. The following lemma gives the resulting limit expression in this case.

Lemma 5.6. Let Ω : R+ → R have asymptotic behaviour

Ω(p) =
k′∑

j=−1

bj
p2j+1 +O

(
1

p2k′+3

)

Then for h ∈ C∞0 (R3) and WΩ,ε(h) = 1
(2π)3

∫
R3 WΩ,ε(x)h(x)d3x the distribution W̃Ω,+,

defined for h ∈ C∞0 (R3) as limε→0WΩ,ε(h) is given by

W̃Ω,+(h) = 1
2π2

(
−2b−1

r4+
(h) + b0

r2+
(h) + V k′−1lo(h) +R(2k′−1)

Ω,L (h)
)

V k′−1lo(h) =−
∫ ∞
0

k′−1∑
l=0

bl+1
(2l + 1)!

(−r2)l log
(
r
L

)
h(r)r2dr

R(2k′−1)
Ω,L (h) =

∫
R+
R

(2k′−1)
Ω,L (r)r2h(r)dr .

Here R(2k′−1)
Ω,L is a 2k′ − 1 times continuously differentiable function with asymptotics

given by

R
(2k′−1)
Ω,L (r) =

k′−1∑
l=0

R2l+1
(2l + 1)!

(−r2)l + o(r2k′−1)

R2l+1 = lim
M→∞

∫ M

0
p2l+1

(
pΩ(p)− b−1p

2 − b0
)

dp−
l∑

j=1

bl+1−j
2j

M2j − bl+1 log (ML)


+ bl+1

(
− γ +

2l+1∑
n=1

1
n

)

Proof. By (5.3.4) and assuming wlog h to be spherically symmetric, we have

4π2WΩ,ε(h) =
∫

R+

(
ir

∫
R+
e−p(ε+ir)Ω(p)pdp− ir

∫
R+
e−p(ε−ir)Ω(p)pdp

)
h(r)dr
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5.3 The generalized adiabatic renormalization

Applying the preceding lemma with z = ε+ ir and z = ε− ir we get

ir

∫
R+
e−p(ε+ir)Ω(p)pdp− ir

∫
R+
e−p(ε−ir)Ω(p)pdp = 2ib−1r

(ir + ε)3
+ 2ib−1r

(ir − ε)3
+ . . .

+ ib0r

ir + ε
+ ib0r

ir − ε

+ ir
k′−1∑
l=0

bl+1
(2l + 1)!

(
(ε+ ir)2l+1 ln

(
ε+ir
L

)
− (ε− ir)2l+1 ln

(
ε−ir
L

))
+ ir(R̃(2k′−1)

Ω,L (ε+ ir)− R̃(2k′−1)
Ω,L (ε− ir))

=2b−1

(
ir

(ir + ε)3
+ ir

(ir − ε)3
)

+ 2b0
r2

r2 + ε2

+
k′−1∑
l=0

bl+1
(2l + 1)!

(−r2)l+1 log
(
r2 + ε2

L2

)

+ r2ε2
k′−1∑
l=0

l−1∑
n=0

(
2l + 1
2n+ 2

)
ε2n(−r2)l−n log

(
r2+ε2
L2

)

+ iεr
k′−1∑
l=0

l∑
n=0

(
2l + 1
2n+ 1

)
ε2n(−r2)l−n log

(
ε+ ir

ε− ir

)
+ ir(R̃(2k′−1)

Ω,L (ε+ ir)− R̃(2k′−1)
Ω,L (ε− ir)) . (5.3.5)

Consider first the most singular term 2b−1
(

ir
(ir+ε)3 + ir

(ir−ε)3
)
. For the integral against h

we have by repeated partial integration

2ib−1

∫
R+

( 1
(ir + ε)3

+ 1
(ir − ε)3

)
rh(r)dr =b−1

∫
R+

( 1
(ir + ε)2

+ 1
(ir − ε)2

)
∂r(rh(r))dr

=− ib1
∫

R+

( 1
ir + ε

+ 1
ir − ε

)
∂rr(rh(r))dr

=− 2b1
∫

R+

1
r2 + ε2

(
∂rrh(r) + 2

r
∂rh(r)

)
r2dr

=− 4b−1
r4+

(h) .

Since for r, ε > 0,
∣∣∣log

(
ε+ir
ε−ir

)∣∣∣ < π and
∣∣∣r2 log

(
r2+ε2
L2

)∣∣∣ ≤ r2
∣∣log(r2/L2)

∣∣ + ε2, the only
other terms left after integrating against h(r) and performing the limit ε → 0 are the
next three and we are thus left with

lim
ε→0

WΩ,ε(h) =− 2b1
4π2

∫
R+

1
r2 + ε2

(
∂rrh(r) + 2

r
∂rh(r)

)
r2dr + 2b0

4π2

∫
R+
h(r)dr

+ 1
4π2

∫
R+
V (k′−1)(r) log

(
r2

L2

)
r2h(r)dr + 1

2π2

∫
R+
R

(2k′−1)
Ω,L (r)r2h(r)dr .
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5 On the existence of locally thermal states

The statements concerning the C2k′−1 remainder term finally follow from the statements
on the limits of R̃(2k′−1)

Ω,L (ε± ir) for ε → 0 and the formula for its asymptotics, given in
the preceding lemma.

Comparing this with (5.3.1)-(5.3.3), we see that by choosing k′ = k+1 and an Ω with
the right coefficients bj , the distribution WΩ,+ which has W̃Ω,+ as its symmetry-reduced
distribution can be made to agree with [Gsk]η=η′ , [DGsk]η=η′ or [DD′Gsk]η=η′ up to a C2k+1-
function. More precisely, for functions Ω(), Ω(η) and Ω(ηη′)4 with asymptotic expansions
as specified in lemma 5.6, where the coefficients b()j (η), b(η)j (η) and b(ηη

′)
j (η) are given by

(b()−1 = b
(η)
−1 = b

(η)
0 = 0):

b
()
0 (η) =P

()
0 (η)
2

= 1
2

(5.3.6)

b
()
l+1(η) =(2l + 1)!(−1)l+1Q

()
l (η)
L2l = (2l + 1)!(−1)l+1 [ovl]η=η′

L2(l+1) (5.3.7)

b
(η)
l+1(η) =(2l + 1)!(−1)l+1 Q

(η)
l (η)
L2l = (2l + 1)!(−1)l+1 [∂η

o
vl]η=η′

L2(l+1) (5.3.8)

b
(ηη′)
−1 (η) =−

P
(ηη′)
−1 (η)

4
= 1

2
(5.3.9)

b
(ηη′)
0 (η) =P

(ηη′)
0 (η)

2
=

[ov0]η=η′
L2 (5.3.10)

b
(ηη′)
l+1 (η) =(2l + 1)!(−1)l+1Q

ηη′

l (η)
L2l

=(2l + 1)!(−1)l+1
(

[∂ηη′
o
vl]η=η′

L2(l+1) +
2(l + 1)[ovl+1]η=η′

L2(l+2)

)
(5.3.11)

(l ∈ {0, . . . , k}), we have for WΩ(),+, WΩ(η),+, WΩ(ηη′),+, the distributions corresponding
to the symmetry reduced distributions W̃Ω()(η),+, W̃Ω(η)(η),+, W̃Ω(ηη′)(η),+:

WΩ(),+
C(η)

− [Gsk]η=η′ =
1

4π2C(η)

(
2R(k)

Ω(),L
−R()

Gk(η)
)

︸ ︷︷ ︸
=:R()(η)

+o(σk) (5.3.12)

WΩ(η),+
C(η)

− [∂ηGsk]η=η′ =
1

4π2C(η)

(
2R(k)

Ω(η),L
−R(η)

Gk (η)
)

︸ ︷︷ ︸
=:R(η)(η)

+o(σk) (5.3.13)

WΩ(ηη′),+
C(η)

−
[
∂η∂η′Gsk

]
η=η′ =

1
4π2C(η)

(
2R(k)

Ω(ηη′),L
−R(ηη′)

Gk (η)
)

︸ ︷︷ ︸
=:R(ηη′)(η)

+o(σk−1) . (5.3.14)

4Actually Ω(η) depends on the conformal time η describing the surface to which we restrict; this
dependence will be suppressed here, since the whole calculation takes place on one, fixed surface
of constant η and the important dependence of the Ωs is that on p. In the same way we will also
suppress the η-dependence of the integral kernels K(), K(η) and K(ηη′) below, whereas for the bj and
R(), R(η) and R(ηη′), which only depend on η, we will carry it along.
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5.3 The generalized adiabatic renormalization

As described in chapter 2, the states under consideration are determined by a two-point
function with symmetric part

W ω,s
2 (f1, f2) =

∫
R3

∫
I

∫
I
Ξ(p)

[
Vp(η)Vp(η′) + Vp(η)Vp(η′)

]
. . .× f̂1(η,p)f̂2(η′,p)C3/2(η)dη C3/2(η′)dη′ dp (5.3.15)

with restriction given by the formulas (2.2.30)–(2.2.32). On the other hand, forWΩ,ε(h),
h ∈ C∞0 (R3) we have

WΩ,ε(h) = 1
(2π)3

∫
R3

∫
R3
e−ε‖p‖eipxΩ(p)h(x)dp dx .

Due to the compact support of h and the decay of e−εp for p→∞, we can interchange
the integration order and perform the limit ε→ 0 under the integral and end up with

W̃Ω,+(h) = 1
(2π)3/2

∫
R3
ȟ(p)Ω(p)dp ,

where ȟ is the inverse Fourier transform of h, which shows that Ω is just the Fourier
transform (up to the factor 1

(2π)3/2 ) of the symmetry reduced distribution W̃Ω,+, consid-
ered as a distribution on R3.
For the Fourier transform of K :=

[
W̃ ω,s

2

]
η=η′
−C3(η)W̃Ω(),+ in the sense of distributions

this means:

K̂(h) = 1
(2π)3/2

∫
R3

(
2Ξ(p) |Vp(η)|2 − Ω()(p)

)
C3(η)h(p)dp .

To proceed, we now need some information about K, which is an object defined on a
whole surface of constant η and not just in a convex, normal neighbourhood.
As one of the first applications of the reformulation of the Hadamard condition, it was

shown that two-point functions W ω
2 of Hadamard states are actually smooth functions for

arguments x, x′, which are not spacelike related [Rad96a], so on the surfaces of constant
η, which are Cauchy surfaces, except for coinciding arguments W ω,s

2 is smooth, so W̃ ω,s
2

is smooth except at the origin. On the other hand, we know from lemma 5.6 that also
W̃Ω(),+ is C2k+1 (k = k′+1 as above the order, to which the asymptotic condition on Ω()

as a function of the argument p, here suppressed, is satisfied). K is thus actually a C2k+1

function on R3, because the matching between W̃ ω,s
2 and W̃Ω(),+ was done precisely in

such a way that the singularities of the two functions at the origin cancel to this order.
This implies that the limit

lim
ε→0
K
(
h(x/ε)
ε

)
= lim

ε→0

1
(2π)3/2

∫
R3
ȟ(εp)

(
2Ξ(p) |Vp(η)|2 − Ω()(p)

)
C3(η)dp (5.3.16)

exists for all h ∈ C∞0 (R3) (this is just the value of the C2k+1-function K at the origin),
so in this weak sense the integral∫

R3
2Ξ(p) |Vp(η)|2 − Ω(p)dp (5.3.17)
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5 On the existence of locally thermal states

exists. By differentiating K up to 2k + 1-times, even the limits in this sense with an
additional factor pl for l ≤ 2k + 1 in the integrand exist and define the functions ∂lrK
(and this is one of the necessary condition, the restriction of the two-point function of a
Hadamard state to a surface of constant η has to satisfy).
To get convergence of these integrals in the L1-sense, we however need an additional

assumption. A sufficient condition is that K and its derivatives are in fact L1; we then
get by the Riemann-Lebesgue lemma [Hör03] that p2k+1

(
Ξ(p) |Vp(η)|2 − Ω()(p)

)
goes

to zero for p → ∞. Taking smooth functions p 7→ Ω()(p), decay of the term W̃Ω(),+
is guaranteed; a construction achieving this is presented in section 5.3.6, where Ω() is
constructed as a sum of terms p 7→ (A + p2)−l−1/2, A > 0 and l ∈ N. Relating the
resulting W̃Ω(),+ to Bessel-functions by [Ste84, 9.6.25], one can even show exponential
decay in this case. The L1-condition is therefore a decay condition on the two-point
function of the state at spatial separation. On Minkowski spacetime such conditions are
well known and for important states they were shown to hold [AHR62, Jak98], on curved
spacetimes much less seems to be known (probably also due to the fact that in cases
of spacetimes with more general structure than the rather special Robertson Walker
spacetimes considered here, it is hard to even formulate, what “decay for big spatial
distances” is supposed to mean). Nevertheless, in calculations of the stress-energy tensor
using adiabatic renormalization in the literature, it is usually assumed without comment
that the integrals (5.3.17) exist (at least as improper Riemann integrals). From here on
we will also assume that the integrals exist as L1-integrals; this can be seen to be true
in the example below and can (to finite order) also be achieved for the initial values of
the LTE-states constructed below.
We then get(

[W ω,s
2 ]η=η′ −

WΩ()

C(η)

)
(x,x′) = 1

(2π)3C(η)

∫
R3
eip(x−x′)

(
2Ξ(p)|Vp(η)|2 − Ω()(p)

)
︸ ︷︷ ︸

=:K()(p)

dp

(since this is the C2k+1-function evaluated at (x,x′) ∈ R3 × R3, the terms C4(η) from
the volume-element in the corresponding regular distributions are now missing).
First taking derivatives in the sense of distributions but otherwise proceeding in the

same way, we get(
[DW ω,s

2 ]η=η′ −
WΩ(η)

C(η)

)
(x,x′) = 1

(2π)3C(η)

∫
R3
eip(x−x′) × . . .

. . .×
(
Ξ(p)

(
V ′p(η)Vp(η) + Vp(η)V ′p(η)

)
− Ω(η)(p)

)
︸ ︷︷ ︸

=:K(η)(p)

dp

([
DD′W ω,s

2
]
η=η′ −

WΩ(ηη′)

C(η)

)
(x,x′) = 1

(2π)3C(η)

∫
R3

2eip(x−x′)

. . .×
(
2Ξ(p)|V ′p(η)|2 − Ω(ηη′)(p)

)
︸ ︷︷ ︸

=:K(ηη′)(p)

dp .
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In the calculation of expectation values of Wick products we will need the par-
tial restrictions

[
W SHP
ω,k

]
η=η′

= [W ω,s
2 − Gsk]η=η′ ,

[
DW SHP

ω,k

]
η=η′

= [D (W ω,s
2 − Gsk)]η=η′ and[

DD′W SHP
ω,k

]
η=η′

= [DD′ (W ω,s
2 − Gsk)]η=η′ , but using (5.3.12)–(5.3.14) they can be written

as [
W SHP
ω,k

]
η=η′

= [W ω,s
2 ]η=η′ −

WΩ()

C(η)
+ R()(η)

4π2C(η)[
DW SHP

ω,k

]
η=η′

= [DW ω,s
2 ]η=η′ −

WΩ(η)

C(η)
+ R(η)(η)

4π2C(η)[
DD′W SHP

ω,k

]
η=η′

=
[
DD′W ω,s

2
]
η=η′ −

WΩ(ηη′)

C(η)
+ R(ηη′)(η)

4π2C(η)
.

5.3.4 Conditions on Hadamard states
As discussed in the the last section, from the fact that the distributions

[
W SHP
ω,k

]
η=η′

,[
DW SHP

ω,k

]
η=η′

and
[
DD′W SHP

ω,k

]
η=η′

are C2k+1 functions on R3, we can infer the existence

of certain integrals (“improper” in the sense of equation (5.3.16)) over p 7→ p2k+1K()(p),
p 7→ p2k+1K(η)(p) and p 7→ p2k−1K(ηη′)(p).
In the case where we have smooth Ω(), Ω(η) and Ω(ηη) and a L1-condition on the

spatial derivatives of the restrictions of W ω,s
2 , DW ω,s

2 and DD′W ω,s
2 to the surface of

constant η, the functions p 7→ K()(p), p 7→ K(η)(p) and p 7→ K(ηη′)(p) have to be at
least o(p−2k−1) respectively o(p−2k+1). As far as the Ω(), Ω(η) and Ω(ηη′)) are concerned,
only their asymptotic behaviour for p→∞ is prescribed, but this is done in a consistent
way in the sense that for Ω()(η), Ω()′(η) belonging to Gsk and Gsk′ with k′ > k there
holds [Ω()′(η)−Ω()(η)](p) ∼ o(p−2k′−1), so the lower orders in 1

p agree. For a Hadamard
state, therefore the functions p 7→ 2Ξ(p)|Vp(η)|2, p 7→ Ξ(p)

(
V ′p(η)Vp(η) + Vp(η)V ′p(η)

)
and p 7→ 2Ξ(p)|V ′p(η)|2 have the same asymptotics for p→∞ as the functions Ω(), Ω(η)

and Ω(ηη′) respectively. By (5.3.6)–(5.3.11) this means

2Ξ(p)|Vp(η)|2 ∼
1
2p

+
∞∑
l=0

(2l + 1)!(−1)l+1

[
o
vl
]
η=η′

L2(l+1)p2l+3 (5.3.18)

2Ξ(p)Re
(
V ′p(η)Vp(η)

)
∼
∞∑
l=0

(2l + 1)!(−1)l+1

[
∂η

o
vl
]
η=η′

L2(l+1)p2l+3 (5.3.19)

2Ξ(p)|V ′p(η)|2 ∼
p

2
+

[
o
v0
]
η=η′

L2p

+
∞∑
l=0

(2l + 1)!(−1)l+1

p2l+3


[
∂ηη′

o
vl
]
η=η′

L2(l+1) +
2(l + 1)

[
o
vl+1

]
η=η′

L2(l+2)

 .

(5.3.20)
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By (5.2.15) and (5.2.16), the terms appearing in this asymptotic expansion can be cal-
culated purely from Qm,ξ; for 2Ξ(p)|Vp(η)|2 and 2Ξ(p)|V ′p(η)|2 the first few terms are e.g.
given by

2Ξ(p)|Vp(η)|2 ∼
1
2p
− Qm,ξ(η)

4p3 +
Q′′m,ξ(η) + 3Q2

m,ξ(η)
16p5 − . . . (5.3.21)

2Ξ(p)|V ′p(η)|2 ∼
p

2
+
Qm,ξ
4p
− 1
p3

(
Q′′m,ξ(η) +Q2

m,ξ(η)
16

)
+ . . . (5.3.22)

In the cases where explicit analytic expressions for the o
vj for all j ∈ N can be obtained,

this completely prescribes the asymptotics for Ξ and the initial values |Vp(η)|2 and
|V ′p(η)|2. The construction of candidates for Hadamard states satisfying L1-conditions
can then be reduced to finding functions with this asymptotic behaviour for some η = η0
(which one can try to tackle by using resummation techniques) and using these func-
tions as Ξ, respectively initial values for the mode-functions Vp. But even when one
is not able to obtain explicit analytic expressions for the o

vj , this procedure still gives
an easy criterion (the procedure to obtain [ovj ]η=η′ by the recursion relations (5.2.15),
(5.2.16) can be implemented on computer algebra systems without much effort) for the
asymptotics of the initial values for |Vp|2 and |V ′p(η)|2, which leads to states with the
same regularity properties as adiabatic vacua (a bit more on that below). Compared
to the adiabatic vacuum construction, (5.2.15) and (5.2.16) are however much simpler
to handle; furthermore, since it is clear from the outset that only requirements on the
asymptotic behaviour of Ξ and the initial value functions Vp(η0) and V ′p(η0) (for p→∞)
are imposed, all questions regarding values for these functions for finite values of p are
clearly separated from the outset. Adding e.g. a function of p that vanishes quicker than
any inverse power of p for p → ∞ will not change the asymptotics at all and a similar
procedure will in fact be used to construct LTE states.
There is one interesting point which should be mentioned here, especially since its

discussion also sheds some light on the relation to adiabatic vacua: a priori (5.3.18)–
(5.3.20) are three independent conditions; however for a Fock state we have Ξ = 1/2 and
since there exist Hadamard Fock states assuming that they in fact lead to absolutely
convergent integrals as discussed above, it has to be possible to satisfy all three relations
by just choosing the two initial-value function p 7→ Vp(η0) and p 7→ V ′p(η0).
Using the Wronski determinant condition (2.2.24), we get for mode functions Vp:(

V ′pVp + Vp
′
Vp
)2

=(2Vp
′
Vp + i)(2V ′pVp − i)

=4 |Vp|2 |Vp|2 + 2i
(
V ′pVp − Vp

′
Vp
)

+ 1

=4
∣∣∣V ′p∣∣∣2 |Vp|2 − 1

⇒
(
Re

(
VpVp

′))2
=
∣∣∣V ′p∣∣∣2 |Vp|2 − 1

4
(5.3.23)

But setting Ξ = 1
2 in (5.3.18)–(5.3.20), this means that the product of the rhs. of the first

and third equation have to have the same asymptotics as 1
4 plus the rhs. of the second
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5.3 The generalized adiabatic renormalization

equation squared. That such a relation in fact holds to the first few orders in 1
p can

be checked by explicit calculation (using a computer-algebra system this was actually
checked to order 1

p10 ), establishing such a relation would be interesting for the following
reason: If we denote a function |Vp|2 satisfying the asymptotic condition (5.3.18) up to
order 1

p2k+3 for all η ∈ Î by w(k)
p and set for some η0 ∈ Î

V (k)
p (η) =

√
w

(k)
p (η) e

i
∫ η
η0

dη̃

4w(k)
p (η̃) ,

then this function has the property:

V (k)
p

′(η) =

 w
(k)
p
′(η)

2
√
w

(k)
p (η)

+ i

4
√
w

(k)
p (η)

 ei
∫ η
η0

dη̃

4w(k)
p (η̃) ,

which implies

∣∣∣V (k)
p

′(η)
∣∣∣2 =


(
w

(k)
p
′(η)

)2

4w(k)
p (η)

+ 1
4w(k)

p (η)


Using that the rhs of (5.3.19) is obtained from (5.3.18) by taking η-derivatives (and
multiplying with 1

2), we get that the rhs of (5.3.19) has the same asymptotics to order
k as w(k)

p
′(η)/2 and our assumed property then takes the form∣∣∣V (k)

p (η)′
∣∣∣2w(k)

p (η)− 1
4
∼
(
w(k)
p
′(η)

)2
/4 ;

but this implies that
∣∣∣∣V (k)
p
′
(η)
∣∣∣∣2 and

∣∣∣V ′p(η)∣∣∣2 have the same asymptotics, so in fact a
Vp(η) with the asymptotics required by (5.3.18)–(5.3.20) can be obtained by setting
Vp(η) = V

(k)
p (η), V ′p(η) = V

(k)
p
′(η), where the V (k)

p (η) is fixed by (5.3.18) only. One
can thus reduce the problem to the specification of the single function w

(k)
p (η) and its

derivative w(k)
p (η) and this is precisely the first step in the approaches using adiabatic

vacua (instead of w(k), there the function 1
4w(k) is used); ultimately this is justified by

the results from [JS02], in the framework presented here it is justified when working
to a finite order in 1

p2k+1 to which the assumed property is showed. Except for the
continuation of the discussion of adiabatic vacua and renormalization in section 5.3.7,
these remarks will however not be used in the following.
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5.3.5 An instructive example
To get a feeling how the different steps involved in this somewhat lengthy procedure
interact, it is enlightening to consider de Sitter spacetime, where the above steps can
be performed explicitly to arbitrary order. The part of de Sitter spacetime, which can
be interpreted as spatially flat Robertson-Walker spacetime is characterized by η < 0
and its metric tensor in conformal coordinates is given by C(η) = 1

H2η2 , H the Hubble
constant. The curvature then follows as R = 12H2 and Qm,ξ is obtained as

Qm,ξ : η 7→
(
m2

H2 + 12ξ − 2
)

1
η2 .

As can be checked by straightforward differentiation, the recursion relations (5.2.12),
(5.2.13) are solved by

o
vl : (η, η′) 7→ L2(l+1)

22(l+1)l!(l + 1)!(ηη′)l+1

l∏
j=0

(
m2

H2 + 12ξ − 2 + j(j + 1)
)
. (5.3.24)

The b()j -coefficients then follow as

b
()
0 (η) =1

2

b
()
l+1(η) =(2l + 1)!(−1)l+1

22(l+1)l!(l + 1)!
1

η2(l+1)

l∏
j=0

(
m2

H2 + 12ξ − 2 + j(j + 1)
)

= (2l + 1)!
24(l+1)l!(l + 1)!

1
η2(l+1)

l∏
j=0

(
µ− (2j + 1)2

)

µ :=9− 4
(

12ξ + m2

H2

)
.

For a Hadamard state, the asymptotics of p 7→ |Vp(η)|2 therefore has to be

|Vp(η)|2 ∼
η

2
· 1
ηp

(
1 + µ− 1

2(2ηp)2
+ 3

4
(9− µ) (1− µ)

(2ηp)4
+ . . .

)
This asymptotic expansion does not converge; comparing to the known asymptotic ex-
pansion of the absolute square of Hankel functions [Ste84, 9.2.28]

e−πIm (√µ/2)|H(1)√
µ/2(x)|

2 ∼ 2
πx

1 +
∞∑
l=0

(2l + 2)!
22(l+1)((l + 1)!)2(2x)2(l+1)

l∏
j=0

(
µ− (2j + 1)2

)
it is seen, that the function

p 7→ −πη
4

e−πIm (√µ/2)|H(1)√
µ/2(−ηp)|

2
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has the same asymptotic expansion (for −ηp → ∞), so the symmetric part W ω,s
2 of a

Hadamard state restricted to η = η′ is given by

[W ω,s
2 ]η=η′ = −

H2η3

(2π)3
∫

R+
eipxπ

4
e−πIm (√µ/2)|H(1)√

µ/2(−pη)|
2dp .

The b(ηη′)-coefficients follow as

b
(ηη′)
−1 (η) =1

2

b
(ηη′)
0 (η) = 1− µ

4(2η)2

b
(ηη′)
l+1 (η) = (2l + 1)!(−1)l+1

22(l+1)l!(l + 1)!η2(l+1)

. . .×
(

(l + 1)2

η2 + 2(l + 1)
4(l + 1)(l + 2)η2

(
m2

H2 + 12ξ − 2 + (l + 1)(l + 2)
))

. . .×
l∏

j=0

(
m2

H2 + 12ξ − 2 + j(j + 1)
)

= (2l + 1)!
22(l+1)l!(l + 1)!(2η)2(l+2)

[
4(l + 1)2 + 4(l + 1)(l + 2) + 1− µ

2(l + 2)

]

. . .×
l∏

j=0

(
µ− (2j + 1)2

)

and this gives for p 7→ |V ′p(η)|2 the asymptotics

|V ′p(η)|2 ∼ p
{1

2
+ 1− µ

4(2ηp)2

+
∞∑
l=0

(2l + 1)!
22(l+1)l!(l + 1)!

1
(2ηp)2(l+2)

(
(2l + 2)(2l + 3) + 1− µ

2(l + 1)

) l∏
j=0

(
µ− (2j + 1)2

)}
.

(5.3.25)

To get a candidate for V ′p(η) with this asymptotic expansion, consider next the function

f : (η, η′) 7→ DD′
√
−η
√
−η′e−πIm (√µ/2)Re

(
H

(1)√
µ/2(−pη)H

(1)√
µ/2(−pη′)

)
.
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For its restriction to η′ = η using [Ste84, 9.2.28] and [Ste84, 9.2.30] the asymptotics is
obtained as

f(η, η) ∼ 1
2π

[
1
pη2

{
1 +

∞∑
l=0

(2l + 2)!
22(l+1)((l + 1)!)2

1
(2pη)2(l+1)

l∏
j=0

(
µ− (2j + 1)2

)}

− 2
pη2

{
1 +

∞∑
l=0

(2l + 2)!
22(l+1)((l + 1)!)2

1
(2pη)2(l+1)

l∏
j=0

(
µ− (2j + 1)2

)}

− 2
pη2

{
1 +

∞∑
l=0

(2l + 2)(2l + 2)!
22(l+1)((l + 1)!)2

1
(2pη)2(l+1)

l∏
j=0

(
µ− (2j + 1)2

)}

+ 4p
{

1− 1
2
µ− 3
(2ηp)2

−
∞∑
l=0

(2l + 2)!
22l+3(l + 1)!(l + 2)!

µ− (2l + 5)(2l + 3)2

(2pη)2(l+2)

l∏
j=0

(
µ− (2j + 1)2

)}]

= 2p
π
− 1

2πpη2

[
1 + µ− 3

2

+
∞∑
l=0

(2l + 2)!
22(l+1)((l + 1)!)2(2pη)2(l+1)

[
1 + 4(l + 1) + µ− (2l + 5)(2l + 3)2

2(l + 2)

]

×
l∏

j=0

(
µ− (2j + 1)2

) ]

and comparing this to (5.3.25), we see that π4 f(η, η) has the same asymptotics for p→∞
as p 7→ |V ′p(η)|2. The restriction of DD′W ω,s

2 of a Hadamard state is therefore given by

[
DD′W ω,s

2
]
η=η′ =

H2η2

(2π)3
∫

R+
eipx

[
∂η∂η′

(
π

4
√
−η
√
−η′e−πIm (√µ/2)

. . .× Re
(
H

(1)√
µ/2(−pη)H

(1)√
µ/2(−pη′)

))]
η=η′

dp .

Together with the expression for [W ω,s
2 ]η=η′ and the Wronski determinant condition for

Vp
5 this suggest

Vp(η) =
√
π

2
√
−η e−

π
2 Im (√µ/2)H

(1)√
µ/2(−ηp)

as mode functions for a Hadamard state; one can however add an arbitrary function of
η and p to Vp provided the asymptotics of Vp and V ′p is not changed.

5In this section, and this section only, we use the convention Vp
′
Vp − VpV ′p = i, since we want to be

able to compare the mode-functions obtained to those of [SS76] and furthermore this conventions
significantly reduces the amount of complex conjugations required.
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For this choice of Vp the condition (5.3.23) on ∂η|Vp(η)|2 can be explicitly checked to all
orders; for the b(η)l+1(η) we have

b
(η)
l+1(η) = −1

η

(2l + 1)!
22(l+1)(l!)2(2η)2(l+1)

l∏
j=0

(
µ− (2j + 1)2

)
and this leads to the requirement

∂η|Vp(η)|2 ∼ −
2
ηp

(2l + 1)!
22(l+1)(l!)2(2ηp)2(l+1)

l∏
j=0

(
µ− (2j + 1)2

)
On the other hand, from [Ste84, 9.2.28] we get

π

4
e−πIm (√µ/2)

(
pη
(
|H(1)√

µ/2|
2
)′

(−pη)− |H(1)√
µ/2(−pη)|

2
)
∼

− 2
ηp

∞∑
l=0

(2l + 1)!
22(l+1)(l!)2(2ηp)2(l+1)

l∏
j=0

(
µ− (2j + 1)2

)
(5.3.26)

which shows that the Vp obtained in this way indeed satisfies all the necessary conditions
for mode functions defining a Hadamard state.
In this case the function η 7→ Vp(η) happens to be a solution of the mode equation

V ′′p +Qm,ξVp = 0 and so can be directly taken as the mode function; in general one can
only expect to find for an η0 fixed arbitrarily two functions p 7→ Vp(η0) and p 7→ V ′p(η0)
with the required asymptotic properties, and then has to find the mode functions as
solutions to the above ODE with Vp(η0) and V ′p(η0) as initial values.
Using this mode-functions and a function p→ Ξ(p) which goes to 1

2 for p→∞ faster
than any inverse power of p, we can now define Hadamard states by (2.2.29). Choosing
Ξ as constantly equal to 1

2 we get a well known state; looking at the mode functions,
they are nothing but the mode functions appearing in [SS76] for the Robertson Walker
mode-decomposition of the (unique)de Sitter invariant state.
After this excursion into the general structure of Hadamard states and an illustrating
example, we now proceed in the formalism developed so far to calculate expectation
values of the Wick product and the second balanced derivative.

5.3.6 Calculation of the expectation values

To calculate the functions w() = D
()
DW SHP

ω,k , w(η) = D
(η)
D DW SHP

ω,k and w(ηη′) = D
(ηη′)
D W SHP

ω,k

(or rather their restriction to the diagonal) by (5.3.12) – (5.3.14) (i.e. using the integral
representations derived above), we need to fix functions Ω, Ω(η) and Ω(ηη′) with the
right asymptotics. The first idea would be to choose the inverse powers p 7→ 1

p2l+1

themselves; since they however diverge for p → 0 (and the divergence gets increasingly
worse for growing l), they have to be modified for small p. An easy way to achieve this
(inspired from both the expression of the vacuum two-point function of the massive field
on Minkowski spacetime as well as from the expressions for the adiabatic vacua), is to
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choose sums of the functions Ωn : p 7→
(
A+ p2)−1/2−n, where A > 0 is a constant. For

them
1

(A+ p2)n+1/2 = n!
(2n)!

1
p2n+1

∞∑
j=0

(2(n+ j))!
j!(n+ j)!

(
− A

4p2

)j
holds, so setting

Ω(k+1)(p) =
k+1∑
n=0

cnΩn(p)

the asymptotic behaviour of Ω(k+1) is given by

Ω(k+1)(p) = 1
p

k+1∑
l=0

(2l)!
l!

( 1
p2

)l l∑
n=0

n!
(2n)!

cn
(l − n)!

(
−A

4

)l−n
+O

(
p−2k−5

)
.

Thus p 7→ pΩ(k)(p) has the asymptotic expansions
∑k+1
l=0

bl
p2l

+O(p−2(k+1)) iff

(2l)!
l!

l∑
n=0

n!
(2n)!

cn
(l − n)!

(−A
4

)l−n
= bl, l = 0, 1, . . . , k + 1

holds. This determines cn as

cn =
n∑
j=0

(2n)!
(2j)!

j!
(n− j)!n!

(
A

4

)n−j
bj . (5.3.27)

Concerning the asymptotic expansion of Ω(ηη′), the leading order term is Ω ∼ b(ηη
′)

−1 p and
so seems not to fit into this scheme of choosing Ω, but since p 7→ p is regular at p = 0 one
can just add the term b

(ηη′)
−1 p to Ω(k+1) to obtain an Ω(ηη′) with the correct asymptotics.

Using this choice of Ω(k+1), the integral kernels K, K() and K(ηη′) follow as

K()(p) =2Ξ(p)|Vp(η)|2 −
1

2
√
A+ p2 −

A−Qm,ξ(η)
4 (A+ p2)3/2

(5.3.28)

K(rr)(p) =K() −
3(A−Qm,ξ(η))2 +Q′′m,ξ(η)

16 (A+ p2)5/2
(5.3.29)

K(η)(p) =2Ξ(p)Re
(
Vp(η)V ′p(η)

)
+

Q′m,ξ(η)

8 (A+ p2)3/2
(5.3.30)

K(ηη′)(p) =2Ξ(p)|V ′p(η)|2 −
p

2
− Qm,ξ(η)

4
√
A+ p2 +

Q2
m,ξ(η)− 2AQm,ξ(η) +Q′′m,ξ(η)

16 (A+ p2)3/2
.

(5.3.31)

Furthermore, one can also explicitly calculate the R2l+1
(2l+1)! ; the general result is

R2l+1
(2l + 1)!

=1
l!

(
−A

4

)l [min{l+1,k+1}∑
n=0

n!
(2n)!

(
−A

4

)1−n

(l + 1− n)!
[
ψ(l + 1− (n− 1)) + ψ(l + 1)

− 2 log
(√

AL
2

) ]
cn

+ (−1)l
k+1∑
n=l+2

n!
(2n)!

(
A
4

)1−n

l!
(n− l − 2)! cn

]
. (5.3.32)
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(here ψ is the Digamma function [Ste84, 6.5]), and using this we get more concrete
formulas for the R()(η), R(η)(η) and R(ηη′)(η) appearing above. In the end we need the
restrictions of R(), ∂rrR(), R(η) and R(ηη′) to the diagonal x = x′ and from (5.3.12)–
(5.3.14), (5.3.6)–(5.3.11), (5.3.32) and (5.3.27) they follow as

[
R

()
0

]
x=x′

=2
[
R

(0)
Ω(),L

]
x=x′
−
[
R

()
G0

]
x=x′

=− A

2

[
ψ(2) + ψ(1)− 2 log

(
L
√
A

2

)]
c
()
0

+ 2
(

2ψ(1)− 2 log
(
L
√
A

2

))
c
()
1
2
− [R∆]x=x′ −

o
v0
L2 [log(q)]x=x′

=
(
2γ − 1 + log

(
AL2

4

)) A
4

+
(
2γ + log

(
AL2

4

)) Qm,ξ(η)−A
4

− C(η)R(η)
72

− Qm,ξ(η)
4

log (C(η))

=
(
2γ + log

(
AL2

4C(η)

)) Qm,ξ(η)
4

− A

4
− C(η)R(η)

72
(5.3.33)[

∂rrR
()
1

]
x=x′

=2
[
∂rrR

(1)
Ω(),L

]
x=x′
−
[
∂rrR

()
G1

]
x=x′

=− 2
(
A

4

)2
[
ψ(3) + ψ(2)− 2 log

(
L
√
A

2

)]
c
()
0

+ A

2

[
2ψ(2)− 2 log

(
L
√
A

2

)]
c
()
1

− 1
3

[
ψ(1) + ψ(2)− 2 log

(
L
√
A

2

)]
c
()
2

− [∂rrR∆]x=x′ − 2
[ o
v1
L4 log q

]
η=η′
−
[
v0
L2∂rr log(q)

]
x=x′

=− 1
4

(
A2

4

[
5/2− 2γ − log

(
AL2

4

)]
+A

[
2− 2γ − log

(
AL2

4

)] Qm,ξ(η)−A
2

+
(

(A−Qm,ξ(η))2

4
+
Qm,ξ(η)

12

)[
1− 2γ − log

(
AL2

4

)])

− 1
240

[
15
8

(
C ′(η)
C(η)

)4
− 11

3
C ′′(η) (C ′(η′))2

C3(η)
+ 3

4

(
C ′′(η)
C(η)

)2
+ C ′(η)C ′′′(η)

C2(η)

]

−
Q′′m,ξ(η)/3 +Q2

m,ξ(η)
16

logC(η)− Qm,ξ
96

(
C ′(η)
C(η)

)2
(5.3.34)
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[
R

(η)
0

]
x=x′

=2
[
R

(0)
Ω(η),L

]
x=x′
−
[
R

(η)
G0

]
x=x′

=−
Q′m,ξ(η)

8

[
2ψ(1)− 2 log

(
L
√
A

2

)]

− [∂ηR∆]x=x′ −
[
∂η

o
v0
L2 log q

]
x=x′
−
[ o
v0
L2

∂ηq

q

]
x=x′

=
Q′m,ξ(η)

8

(
2γ + log

(
L2A

4C(η)

))
− (CR)′(η)

144
− Qm,ξ(η)

4
C ′(η)
2C(η)

(5.3.35)

[
R

(ηη′)
0

]
x=x′

=2
[
R

(0)
Ω(ηη′),L

]
x=x′
−
[
R

(ηη′)
G1

]
x=x′

=− A

2

[
ψ(2) + ψ(1)− 2 log

(
L
√
A

2

)]
c
(ηη′)
0

+ 2
(

2ψ(1)− 2 log
(
L
√
A

2

))
c
(ηη′)
1
2
−
[
∂ηη′R∆

]
x=x′ −

[
2ov1
L4

]
η=η′

−
[(

∂ηη′
o
v0

L2 + 2ov1
L4

)
log(q)

]
x=x′
−
[
∂ηq∂η′

o
v0 + ∂η′q∂η

o
v0

L2q

]
x=x′

+
[(
∂ηq∂η′q

L2q2
−
∂ηη′q

L2q

)
o
v0

]
x=x′

=
(
2γ − 1 + log

(
AL2

4

)) AQm,ξ(η)
8

+
(
2γ + log

(
AL2

4

))(Q′′m,ξ(η) +Q2
m,ξ(η)

16
− AQm,ξ(η′)

8

)

− 1
40

[
(CR)′′(η)

9
+ 1

8

(
C ′′(η)
C(η)

)2
− C ′′(η) (C ′(η))2

6C3(η)
+
(
C ′(η)
2C(η)

)4]

−
Q′′m,ξ(η)/3 +Q2

m,ξ(η)
16

−
Q′′m,ξ(η) +Q2

m,ξ(η)
16

log(C(η))−
C ′(η)Q′m,ξ(η)

8C(η)

+
[
5
4

(
C ′(η)
C(η)

)2
− C ′′(η)

C(η)

]
Qm,ξ(η)

24
(5.3.36)
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5.3 The generalized adiabatic renormalization

Taking this all together, we have the following result

Theorem 5.7. For a homogeneous and isotropic Hadamard state with two-point function
W ω,s

2 , let the function W SHP
ω,k be given by W SHP

ω,k = W ω,s
2 −Gsk. Then the coincidence limits

x = x′ of (x, x′) 7→ W SHP
ω,k (x, x′), (x, x′) 7→ ∂rrW SHP

ω,k (x, x′), (x, x′) 7→ DW SHP
ω,k (x, x′) and

(x, x′) 7→ DD′W SHP
ω,k (x, x′), where these functions are assumed to be in L1(R3×R3) after

partial restriction to the surface of constant η = η′, are given by

[
W SHP
ω,k

]
x=x′

= 1
(2π)3C(η)

∫
R3
K()(p)dp +

[
R()
]
x=x′

4π2C(η)[
∂rrW

SHP
ω,k

]
x=x′

= 1
(2π)3C(η)

∫
R3

−p2

3
K(rr)(p)dp +

[
R(rr)

]
x=x′

4π2C(η)[
DW SHP

ω,k

]
x=x′

= 1
(2π)3C(η)

∫
R3
K(η)(p)dp +

[
R(η)

]
x=x′

4π2C(η)[
DD′W SHP

ω,k

]
x=x′

= 1
(2π)3C(η)

∫
R3
K(ηη′)(p)dp +

[
R(ηη′)

]
x=x′

4π2C(η)

The functions K()–K(ηη′) and R()–R(ηη′) are defined in (5.3.28)–(5.3.31) and (5.3.33)–
(5.3.36).

Using this information, we can finally come to the calculation of the expectation values
of :φ2 :SHP and ðab :φ2 :SHP in homogeneous and isotropic states with appropriate decay
conditions. For ω(:φ2 :SHP) we directly get

ω(:φ2 :SHP) =
[
W SHP
ω,k

]
x=x′

.

Due to the symmetry of W SHP
ω,k many terms involving derivatives with respect to the

spatial variables vanish; the remaining ones are ∂xxW SHP
ω,k = ∂yyW SHP

ω,k = ∂zzW SHP
ω,k and

∂xx′W
SHP
ω,k = ∂yy′W

SHP
ω,k = ∂zz′W

SHP
ω,k . Using the Christoffel symbols

Γηηη = Γηxx = Γηyy = Γηzz = Γxxη = Γyyη = Γzzη = C ′(η)
2C(η)

for εab = −1
4ω(ðab :φ2 :SHP) = 1

2

[
∇a∇b′W SHP

ω,k

]
x=x′
− 1

2

[
∇a∇bW SHP

ω,k

]
x=x′

we thus get the
non-vanishing components

εηη =1
2

[
∂ηη′W

SHP
ω,k

]
x=x′
− 1

2

[
∂ηηW

SHP
ω,k

]
x=x′

+ C ′(η)
4C(η)

[
∂ηW

SHP
ω,k

]
x=x′

εxx = εyy = εzz =1
2

[
∂j∂j′W

SHP
ω,k

]
x=x′
− 1

2

[
∂jjW

SHP
ω,k

]
x=x′

+ C ′(η)
4C(η)

[
∂ηW

SHP
ω,k

]
x=x′

=−
[
∂rrW

SHP
ω,k

]
x=x′

+ C ′(η)
4C(η)

[
∂ηW

SHP
ω,k

]
x=x′

103



5 On the existence of locally thermal states

By the procedure described in section 5.1.2 above, the double η-derivative can be reduced
to terms containing only first derivatives; explicitly using equation (5.2.23), performing
the limit x→ x′ and evaluating the expressions involving R∆, q, ov0 and o

v1 we have

εηη =1
2

[
∂ηη′W

SHP
ω,k

]
x=x′

+ 3C ′(η)
4C(η)

[
∂ηW

SHP
ω,k

]
x=x′
− 3

2

[
∂rrW

SHP
ω,k

]
x=x′

+ C(η)
(
m2 + ξR(η)

)
2

[
W SHP
ω,k

]
x=x′
−

[
RPm,ξ

]
x=x′

2[
RPm,ξ

]
x=x′

= 1
4π2C(η)

(
Q′′m,ξ(η)

8
+ 3

8
Q2
m,ξ(η) + 1

240

[
6
(
C ′(η)
C(η)

)4
− 12C

′′(η) (C ′(η))2

C3(η)

+ 3
(
C ′′(η)
C(η)

)2
− (CR)′′(η) + 3C

′(η)C ′′′(η)
C2(η)

]
−
C ′(η)Q′m,ξ(η)

8C(η)

−Qm,ξ(η)
(
C(η)R(η)

72
+ C ′′(η)

12C(η)
− 5

48

(
C ′(η)
C(η)

)2))
.

To make contact with the calculations above, we finally express the state-dependent
parts of εηη and εxx as

1
2

[
∂ηη′W

SHP
ω,k

]
x=x′

+3C ′(η)
4C(η)

[
∂ηW

SHP
ω,k

]
x=x′
− 1

2

[
(3∂rr −Qm,ξ) W SHP

ω,k

]
x=x′

=1
2

[
DD′W SHP

ω,k

]
x=x′

+ C ′(η)
4C(η)

[
DW SHP

ω,k

]
x=x′
− 3

2

[
∂rrW

SHP
ω,k

]
x=x′

+ 1
2

[(
Qm,ξ(η) + C ′′(η)

2C(η)
− 3

4

(
C ′(η)
C(η)

)2)
W SHP
ω,k

]
x=x′

C ′(η)
4C(η)

[
∂ηW

SHP
ω,k

]
x=x′

= C ′(η)
4C(η)

[
DW SHP

ω,k

]
x=x′
− 1

8

(
C ′(η)
C(η)

)2 [
W SHP
ω,k

]
x=x′

where R(η)C(η)
6 = C′′(η)

2C(η) −
1
4

(
C′(η)
C(η)

)2
was used.
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5.3 The generalized adiabatic renormalization

We can now put everything together to obtain the desired expressions for the expec-
tation values of :φ2 :SHP, ðηη :φ2 :SHP and ðxx :φ2 :SHP in the states of interest:

Theorem 5.8. For a homogeneous and isotropic Hadamard state ω on a Robertson
Walker spacetime with two-point function W ω,s

2 having decay properties like in the last
lemma, the expectation values ω(:φ2 :SHP (x)), ω(εηη(x)) and ω(εxx(x)) are given by

ω(:φ2 :SHP (x)) = 1
(2π)3C(η)

∫
R3
K()(p)dp + [R()]x=x′

4π2C(η)
(5.3.37)

ω(εηη(x)) = 1
(2π)3C(η)

∫
R3

K(ηη′)(p)
2

+ C ′(η)
4C(η)

K(η)(p) + p2

2
K(rr)(p)

+ 1
2

(
Qm,ξ(η) + C ′′(η)

2C(η)
− 3

4

(
C ′(η)
C(η)

)2)
K()(p)dp

+ [R(ηη′)]x=x′
8π2C(η)

+ C ′(η)
16π2C2(η)

[R(η)]x=x′ −
3[R(rr)]x=x′

8π2C(η)

+ 1
2

(
Qm,ξ(η) + C ′′(η)

2C(η)
− 3

4

(
C ′(η)
C(η)

)2) [R()]x=x′
4π2C(η)

−
[RPm,ξ ]x=x′

2
(5.3.38)

ω(εxx(x)) = 1
(2π)3C(η)

∫
R3

p2

3
K(rr)(p) + C ′(η)

4C(η)
K(η)(p)− 1

8

(
C ′(η)
C(η)

)2
K()(p)dp

− [R(rr)]x=x′
4π2C(η)

+ C ′(η)
16π2C2(η)

[R(η)]x=x′ −
(
C ′(η)
C(η)

)2 [R()]x=x′
32π2C(η)

(5.3.39)

This is the main technical tool we will use in construction of LTE-states; before that
one more brief comment on the relation of this procedure for the calculation of expecta-
tion values to adiabatic renormalization will be made in the next section.

5.3.7 Relation to adiabatic vacua and renormalization

We already discussed one aspect of adiabatic vacua in section 5.3.4; with the specific
choice of the Ω(), Ω(η) and Ω(ηη′) from the last section at hand we can now finish the dis-
cussion here. As explained, the first step in this formalism is to introduce “approximate
mode-functions” as

V (k)
p (η) =

√
w

(k)
p (η) e

i
∫ η
η0

dη̃

4w(k)
p (η̃) .

These can then either be used to specify initial values for true mode-functions (leading to
an adiabatic vacuum of some order) or the expressions

∣∣∣V (k)
p (η)

∣∣∣2, Re
(
V

(k)
p
′(η)V (k)

p (η)
)

and
∣∣∣V (k)
p
′(η)

∣∣∣2 can be taken as the Ω(), Ω(η) and Ω(ηη′) in the integral kernels K(), K(η),
K(ηη′) (adiabatic renormalization). Focusing on the case of adiabatic renormalization
and there on K(), we see that we actually take the function w(k) as our Ω(), so the
procedure of adiabatic renormalization can be seen as an alternative procedure to get
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5 On the existence of locally thermal states

an Ω(). The iteration procedure used there leads to an expression for 4
w(k) , which is

nonzero for sufficiently large arguments and so can in principle be used directly as Ω().
Alternatively, one can write its inverse as an asymptotic series in terms (A+p2)−(l+1/2),
l = 0, . . . , k and this is the way adiabatic renormalization is presented in [BD84] and
[Bir78]. One ends up with an expressions of the same structure as in the last section
(with A now having a more complicated form involving Qm,ξ) and the same asymptotics,
so the procedure of adiabatic renormalization can be seen as a rather roundabout way
to calculate the ck from above for some specific choice of A. For Ω(η) and Ω(ηη′) nothing
new happens, except that the expressions appearing get even more complicated.

5.4 Existence of LTE states on a Cauchy surface

5.4.1 The general construction

Coming now back to the problem of constructing states that fulfill thermality conditions
at some instant of time η0, first choose a state ωini, which according to section 2.2.3 can
be specified by giving a function Ξ ≥ 1

2 on R+ and the initial values Vp(η0), V ′p(η0) for
the mode functions Vp appearing in its two-point function. Since we need well-defined
(finite) expectation values for :φ2 :SHP and ðab :φ2 :SHP in this state, these data have to be
chosen in such a way that the asymptotic conditions (5.3.18) and (5.3.19) are satisfied
up to (and including) order 1/p5 and (5.3.20) is satisfied up to (and including) order
1/p3, i.e. the conditions written out in the equations (5.3.21) and (5.3.22) have to hold.
For Hadamard states with decay properties this is automatically the case; explicitly
constructing such states for a given spacetime is however also possible without problems
(e.g. also taking the initial values as a sum of terms proportional to (A+ p2)−l−1/2).
The restriction of the symmetric part W ωini,s

2 of the two-point function of the state
ωini, together with the restrictions of DW ωini,s

2 and DD′W ωini,s
2 to the surface at hand,

then determine functions ŵ()
ini, ŵ

(η)
ini and ŵ(ηη′)

ini via (2.2.30)–(2.2.35).

Consider now the functions obtained from those as ŵ() = ŵ
()
ini+ρµ2,µ4 , ŵ(η) = ŵ

(η)
ini and

ŵ(ηη′) = ŵ
(ηη′)
ini +Nτ2 , where Nτ2 is a positive, symmetric function with variance τ2 and

ρµ2,µ4 is a symmetric function with second and fourth moment µ2 and µ4 respectively.
Furthermore, both functions are assumed to be rapidly decaying, so that all their mo-
ments exist. Due to the positivity of ρµ2,µ4 and Nτ2 , both ŵ() and ŵ(ηη′) are still positive
and since ŵ(η) agrees with ŵ(η)

ini also the inequality ŵ(ηη′)ŵ() −
(
w(η))2 ≥ 1

4 holds, since
it is true for the initial functions ŵ()

ini, ŵ
(η)
ini and ŵ(ηη′)

ini . Furthermore, the asymptotics of
ŵ(), ŵ(η), ŵ(ηη′) and ŵ

()
ini, ŵ

(η)
ini , ŵ

(ηη′)
ini agree, so by lemma 2.9 they again determine a

homogeneous and isotropic state ωµ2,µ4,τ2 which has the same regularity properties on
the Cauchy surface as the one we started from.
Using (5.3.37)–(5.3.39), the differences of the values obtained for the thermal functions
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5.4 Existence of LTE states on a Cauchy surface

of the initial state ωini and the modified ωµ2,µ4,τ2 =: ω are given by

ϑω(η0)− ϑωini(η0) = µ2
4π2C(η0)

(5.4.1)

εωηη(η0)− εωini
ηη (η0) =

(
m2 + (ξ − 1/6)R(η0)

)
C(η0) + C′′(η0)

2C(η0) −
3
4

(
C′(η0)
C(η0)

)2

8π2C(η0)
µ2

+ 1
8π2C(η0)

µ4 + 1
8π2C(η0)

τ2 (5.4.2)

εωxx(η0)− εωini
xx (η0) =− (C ′(η0))2

32π2C3(η0)
µ2 + 1

12π2C(η0)
µ4 . (5.4.3)

Being locally thermal at (sharp) inverse temperature β = 1/(kBT ) now means that
(5.4.1)–(5.4.3) hold with ϑω(η0) = ϑo(β) + c0,m, εωηη(η0) = C(η0) (εo00(β) + c2,m) and
εωxx(η0) = C(η0)

(
εojj(β)− c2,m

)
, with the (Minkowskian) functions ϑo, εo00 and εojj from

(3.3.8)–(3.3.10)6.
Consider first the equation (5.4.1). Since ϑωini can be positive or negative, but µ2 and

C(η0) are always strictly positive, it is not always solvable. However, since ϑo(β) grows
with T (by the lemma 4.1 asymptotically like T 2), there is a T0 such that the lhs of (5.4.1)
is positive for all T > T0 and we can then find a unique µ2(T ) such that (5.4.1) is satisfied.
Moreover, using (4.2.8) and defining f1(T ) = 4π2C(η0) (ϑo(1/(kBT )) + c0,m − ϑωini(η0))
we have

µ2 = f1(T ) ∼ π2C(η0)
3

(kBT )2 . (5.4.4)

Consider next (5.4.3). Moving the µ2-dependent term to the left hand side, inserting
the expression just obtained for µ2 and defining

f2(T ) = 8π2C(η0)
(
C(η0)

(
εojj(1/(kBT )) + c2,m

)
− εωini

xx (η0)
)

+ 1
4

(
C ′(η0)
C(η0)

)2
f1(T ) ,

the equation is transformed into
2
3
µ4 = f2(T ) . (5.4.5)

Again f2(T ) need not be positive whereas µ4 is, but since f1 grows asymptotically like T 2

and εojj like T 4, again there is a T1 such that f2 is positive for T > T1 and (5.4.5) can be
solved, yielding a unique µ4(T ) = 3

2f2(T ) with asymptotics µ4 ∼ 2π4

15 (C(η0)T 2)2 ∼ 6
5µ

2
2.

Finally regarding (5.4.2), by moving the µ2 dependent terms to the left, inserting the
expressions µ2(T ) obtained in the first step and defining

f3(T ) =8π2C(η0)
(
C(η0) (εo00(1/(kBT ))− c2,m)− εωini

ηη (η0)
)

−
[
(m2 + (ξ − 1/6)R(η0))C(η0) + C′′(η0)

2C(η0) −
3
4

(
C′(η0)
C(η0)

)2
]
f1(T )

6The tetrad at each point (η0,x) ∈ MRW(Î , C) appearing in the LTE-condition was taken here to
consist of the vectors 1√

C(η0)
∂η, 1√

C(η0)
∂x, 1√

C(η0)
∂y and 1√

C(η0)
∂z, and decomposing εωab wrt. this

basis we get the prefactors C(η0) appearing in the equations.
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5 On the existence of locally thermal states

we are left with
f3(T ) = µ4 + τ2 . (5.4.6)

Inserting the expression µ4(T ) obtained above, we have for f3(T )− µ4

f3(T )− µ4(T ) ∼ π2C(η0)
60

(kBT )4 , (5.4.7)

which is again positive for T larger than some T2. We can (for such T ) find τ , such that
also (5.4.2) is fulfilled. Nτ2 has to be a positive, symmetric, rapidly decaying function
with a prescribed second moment, but taking e.g. the Gauss function with mean zero
and variance τ2, it is clear that such functions exist. But also ρµ2,µ4 with the required
properties are easily found; taking an arbitrary positive, symmetric and rapidly decaying
function ψ with second and fourth moment m2 and m4, the function

p 7→ (µ2/m2)
(

µ2
µ4/m4

)3/2
ψ

(√
m4
µ4

µ2 p

)
(5.4.8)

has the required properties. This shows the existence of LTE-states on spatial-sections
of Robertson Walker-spacetimes for sufficiently high (sharp) temperature.
Summarizing this section, we have the following existence-theorem for LTE-states:

Theorem 5.9. Let {η0}×R3 ⊂MRW(Î , C) be a surface of constant, conformal time in
the Robertson Walker-spacetime MRW(Î , C). Then, for a neutral scalar Klein-Gordon
field with mass m ≥ 0 and curvature-coupling ξ ∈ R on MRW(Î , C), there exists a
temperature Tmin(m, ξ, η0), such that for all temperatures T > Tmin there are states
ωη01/(kBT ) of the Klein-Gordon field, which are (extrinsically) S(2)

{η0}×R3-thermal at (sharp)
inverse temperature 1/(kBT ).

Inspecting once more the steps involved in the existence proof, one notices that the
key point is really that for high temperatures the state-dependent terms, which (up to
prefactors of C) can be brought into the form of integral expressions of the same type
as in Minkowski-spacetime by the method used here, dominate the remainder terms
that carry most of the dependence on the spacetime dependence. On a (more) technical
level, this implies that at least for the type of existence question considered here, the
precise choice of covariant Wick products does not really matter; adding a geometric
term would not destroy the argument for the existence of LTE states on {η0}×R3. The
dominance of these terms comes from an increase of the second and fourth moment of
the absolute square of the mode functions and its derivative (as functions of p), so for
higher temperatures the mode-functions with big p dominate. On a physical level one
can interpret this as a dominance of the “kinetic-energy”-terms of the quantum field over
“potential-energy”-terms that describe the interaction with the gravitational background
in states of high energy.
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5.4 Existence of LTE states on a Cauchy surface

5.4.2 Continuation of the example
We will again illustrate the steps involved by applying them to the example of de Sitter
spacetime; to simplify the expressions appearing in this section we set kB = 1, i.e.
measure temperature in units of energy.
Taking the de Sitter invariant state from section 5.3.5 as ωini, one can calculate ϑωini ,

εωini
ηη and εωini

xx using the formulas (5.3.37)–(5.3.39) from theorem 5.8 (the - converging
- integrals can be evaluated numerically without big problems); since for this state one
even has an explicit analytic representation for the two-point function in terms of special
functions [SS76],[All85] and the Hadamard parametrix can also be calculated explicitly
using the symmetries of the spacetime, it is even possible to do the calculation using
the expressions for W ω,s

2 and Gsk directly, which also provides a check for the expressions
appearing in theorem 5.8. In any case, by both methods one obtains

ϑωini(η0) =− H2

24π2 −
m2 + (12ξ − 2)H2

16π2

. . .×
(
1− 2γ − ψ

(
3
2 +

√
µ

2

)
− ψ

(
3
2 −

√
µ

2

)
− log

(
H2L2

4

))
εωini
ηη (η0) =− 1

2π2H2η2
0

(
17H4

480
+ m2 + (12ξ − 2)H2

48
H2

+ m2 + (12ξ2 − 2)H2

32

(
m2 + 12ξH2

) [
5
2 − 2γ − ψ

(
5
2 +

√
µ

2

)
− ψ

(
5
2 −

√
µ

2

)
− log

(
H2L2

4

) ])
εini
xx(η0) =− εini

ηη(η0) .

Inserting the spacetime-specific quantities into (5.4.1) we obtain for µ2 the equation

µ2 = 4π2

H2η2
0

(ϑo(1/T ) + c0,m − ϑωini(η0)) . (5.4.9)

The right-hand side of this equation as a function of T = 1
β is plotted in figure 5.2

for a few values of m, ξ and H at conformal time η0 = −1. As used in the general
construction, due to the (asymptotically) quadratic growth of the term ϑo(1/T ) in T ,
the right hand side ultimately gets positive for T bigger than some T0, which depends
on the parameters H, m and ξ.
Next, inserting the scale function C into (5.4.5) and using the expression just obtained

for µ2(T ), we get µ4(T ) as

µ4 = 12π2

H2η2
0

(
εojj(1/T ) + c2,m

H2η2 − εωini
xx (η0)

)
+ 4π2

H4η2
0

(ϑo(1/T ) + c0,m − ϑωini(η0)) .

(5.4.10)
Again, the right-hand side can be plotted as a function of T as is done in figure 5.3, and
again one sees that by the asymptotic growth like T 4 there is a T1, such that the rhs.
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Figure 5.2: µ2(T ) on de Sitter for different values of H, m, ξ
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Figure 5.3: µ4(T ) on de Sitter for different values of H, m, ξ
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Figure 5.4: Ratio µ4(T )/µ2
2(T ) on de Sitter for different values of H, m, ξ

is positive for T > T1. The ratio µ4
µ2

2
is also plotted in figure 5.4; this ratio is seen to

approach 6/5 as it has to.
Finally there remains the equation (5.4.2) determining the third parameter τ2, which

after insertion of the scale factor into f3 takes the form

τ2 = 8π2

H2η2
0

(
εo00(1/T )− c2,m

H2η2
0

− εωini
ηη (η0)

)
− µ4(T )−

m2

H2 + 12ξ − 2
η2
0

µ2(T ) . (5.4.11)

In figure 5.5 the behaviour of the right hand side of this equation is shown in one more
plot and again the positivity for T bigger than some threshold value T2 can be seen.
Summing up, for T bigger than the maximum of T0, T1 and T2 the equations (5.4.9)–
(5.4.11) give us positive µ4, µ2 and τ2 and for large T the ratio µ4/µ

2
2 converges to 6

5 ;
the precise form of these relations is shown in the plots above. Of course, in the end
we are interested in the LTE-state for such T , and to obtain these, we next need the
functions ŵ, and ŵ(ηη′). But by the above, we only need to fix Nτ2 and a ψ to obtain
ρµ2,µ4 by equation (5.4.8). Here we take for Nτ2 the function

Nτ2 : p 7→
√
τ

2π
exp

(
− p

2

2τ

)

and for ψ a Gaussian with mean zero and variance one, so we end up with functions

ŵ(ηη′)(p) =
[
∂η∂η′

(
π

4
√
−η
√
−η′e−πIm (√µ/2)Re

(
H

(1)√
µ/2(−pη)H

(1)√
µ/2(−pη′)

))]
η=η′=η0

+
√
τ

2π
exp

(
− p

2

2τ

)
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Figure 5.5: τ2(T ) on de Sitter for different values of H, m, ξ

and

ŵ()(p) = −πη0
4
e−πIm (√µ/2)|H(1)√

µ/2(−pη0)|2 + 33/2µ
5/2
2√

2πµ3/2
4

exp
(
−3µ2

2µ4
p2
)
.

With expressions for ŵ(), ŵ(η) (just identical to ŵ(η)
ini ) and ŵ(ηη′), the next step is to

proceed to the calculation of the initial values Vp(η0) and V ′p(η0) of the mode-functions
and the function Ξ. Using the results from section 2.2.4 we get

Ξ(p) =
√

1
4

+Nτ2(p)ρµ2,µ4(p) +Nτ2(p)ŵ()
ini(p) + ρµ2,µ4(p)ŵ

(ηη′)
ini (p)

Vp(η0) =
√∣∣∣V ini

p (η0)
∣∣∣2 + ρµ2,µ4(p)

2Ξ(p)
(5.4.12)

V ′p(η0) =
Re

(
V ini
p
′(η0)V ini

p (η0)
)

+ i
2

Vp(η0)
.

These initial values can be used to calculate new mode functions Vp = α(p)V ini
p +β(p)V ini

p .
Picking T = 5, the resulting Ξ, α and β as functions of p are shown in figure 5.6; it is
seen that for p→∞ they approach 1

2 , one and zero respectively, as expected7.
Finally, one can calculate for the S(2)

{−1}×R3-thermal state ω define by Ξ and Vp the
expectation values of ϑω(η), εωηη(η) and εωxx(η) as functions of the (conformal) time η

7As can be seen in these plot, the values for α and β diverge for p→ 0 for the third set of parameters
chosen, which might look troubling. This is however due to the fact that for such choices of parameters
(low masses of the field) the initial mode functions have integrable singularities at p = 0. The
integrals defining the two-point functions and the expectation values of the thermal observables are
nevertheless well-defined.
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5.4 Existence of LTE states on a Cauchy surface
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Figure 5.6: Ξ and coefficients α, β relating new and old mode-functions

using the formalism from section 5.3.6. If the state was a strict local thermal equilibrium
state, a function β of η would exist, such that the three equations

ϑω(η) =ϑo(β(η)) + c0,m

εωηη(η)
C(η)

=εo00(β(η)) + c2,m

εωxx(β(η))
C(η)

=εo11(β(η))− c2,m

hold. To check to which extent this is true, one can calculate the function β(η) appearing
on the right-hand side of these equations from the left hand side by inverting ϑo, εo00 and
εo11. The result when doing this numerically for the first set of (spacetime) parameters
is shown in figure 5.7
It is seen, that the three different “candidate temperatures” do not agree precisely, but

start at the same point for η = −1 = η0; furthermore, in this case we can also see, that
the deviations between the different temperatures is not too dramatic. Furthermore it
should be noted that there are some oscillations in the temperature; their significance will
be discussed qualitatively in the next section. As the general message of this plot and the
example, one should notice that first of all the LTE-state can be explicitly constructed;
secondly one can (numerically) calculate the local thermal parameters off the initial
Cauchy surface and finally these parameters are at least qualitatively in agreement with
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Figure 5.7: 1/β(η) calculated from ϑ, εηη and εxx as functions of η; H = 1.3, m = 1.5,
ξ = .1

an interpretation of the state as a local thermal equilibrium state for some range of
conformal times. They also show the expected, qualitative behaviour, namely they
decreases as the universe expands.

5.5 A comment on the limit of large temperatures

Assume we fix some interval [η1, η2] and construct by the above procedure a state which
is S(2)

η0×R3-thermal at some time η0 ∈ [η1, η2]. The question is then, to what extent
the state is locally thermal in the interval [η1, η2], which one can e.g. try to quantify by
comparing the three different candidates for (inverse) local temperatures β(η) calculated
at the end of the last section by solving each of the three equations

ϑω(η) =ϑo(β) + c0,m (5.5.1)
εωηη(η) =C(η) (εo00(β) + c2,m) (5.5.2)

εωxx(η) =C(η)
(
εojj(β)− c2,m

)
(5.5.3)

for β. In this section we want to make a few remarks on the behaviour of these three
functions when the (local) temperature of our state at the initial time η0 gets big.
First, the only parts in the expressions for ϑω(η), εωηη(η) and εωxx(η) which are state-

dependent are the terms ŵ(), ŵ(η) and ŵ(ηη′) in the integral kernels K(), K(η) and K(ηη′).
Fixing the interval (i.e. the background geometry), it is thus sufficient to discuss the
behaviour of the (p−)integrals over them. Introducing vp(η) := |Vp| (η), these terms can
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5.5 A comment on the limit of large temperatures

be written as

ŵ()(p) =2Ξ(p)v2
p

ŵ(η)(p) =2Ξ(p)vpv′p

ŵ(ηη′)(p) =2Ξ(p)
(

1
4v2
p

+ (v′p)2
)

where relation (5.3.23) was used. Furthermore, using the same relation we also get that
vp satisfies the ordinary differential equation

v′′p + (p2 +Qm,ξ)vp = 1
4v3
p

, (5.5.4)

so in fact the whole discussion can be done in terms of this function instead of the Vp.
During the above construction of the LTE-state, the functions Nτ2 and ρµ2,µ4 both

get scaled in width (asymptotically their width is proportional to T 2), so starting the
construction from a Fock state, we get a Ξ which deviates from its value 1

2 over a
wider and wider range. Furthermore, we also see from (5.4.12) that the initial values
of vp do not decrease; the precise change of v′p is more complicated. As a result, since
not the functions ŵ(), ŵ(η) and ŵ(ηη′), but these functions multiplied with p2 and p4

enter the thermal functions, the mode-functions for larger and larger p dominate the
integrals. But for large p, the time-dependent term Qm,ξ in the ODE (5.5.4) gets less
and less important, so the situation increasingly resembles that of a field on Minkowski
spacetime. The question, which is also related to the exact behaviour of v′p from above
is now, whether one can perform the above procedure for the construction of states
in such a way that the obtained initial values vp(η0) and v′p(η0) (these are uniquely
determined by Vp(η0), V ′p(η0)) lead to a solution of (5.5.4) which shows little oscillation.
As (5.5.4) is an equation for a (unit-mass) particle in the (time-dependent) potential
x 7→ p2+Qm,ξ

2 x2 + 1
8x2 , the simplest way to achieve this for large p is to try and get vp(η0)

that are close to the bottom xmin = 1√
2 4
√
p2+Qm,ξ(η0)

of the potential and small v′p(η0).
Whether this is always achieved by the above construction with the specific choice of
Nτ2 and ψ is at present not clear; what is however possible is to check for oscillations
in the thermal functions for concrete situations. Looking at figure 5.7 it is seen that
although oscillations are present, they are not especially large. Here it should also be
pointed out that in order to simplify the construction we kept ŵ(η) constant; from the
discussion here it seems that one should rather keep the term VpVp

′ (i.e. without the
factor Ξ) constant, since it corresponds to v′p (at least if one starts from a state with
little initial oscillations in vp like in the example of the time-invariant state on de Sitter
spacetime). This will however lead to a considerable complication of the construction
and so has not yet been investigated.
In any case, if the oscillations can be kept under control, the approximately con-

stant vp-terms will dominate the integrals giving the thermal functions and retain their
initial value. They are then scaled by prefactors of 1

C and 1
C2 respectively before be-

ing compared to the Minkowskian thermal functions ϑo, εoµν , and from the asymptotic
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5 On the existence of locally thermal states

behaviour of these functions of (inverse) temperature, it is seen that the (local) temper-
atures determined from (5.5.1)–(5.5.3) will then all scale with the same factor 1√

C
for

high temperatures, giving (local) temperatures that stay closely together.
As already indicated above, physically this can be understood as a concentration of

the energy in kinetic degrees of freedom for high temperatures. These are little affected
by the underlying spacetime geometry and the scaling of temperature with the expansion
of the universe is then the same as for a massless field, as long as the thermal energy
does not get too low.
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A.1 Advanced and retarded Greens operators
On Robertson Walker spacetime, the advanced and retarded greens operators are given
by [

E±(f)
]
(η,x) =∓ 1

(2π)3/2
∫

R3

∫ ∞
−∞

Θ(±(η − λ))Gp(η, λ)f̂(λ,p)C2(λ)dλeipxdp

(A.1.1)

f̂(λ,p) = 1
(2π)3/2

∫
R3
f(λ,x)e−ipxdx

Gp(η, λ) =i Vp(η)Vp(λ)− Vp(η)Vp(λ)√
C(η)C(λ)

,

where Vp is a solution to the ODE

V ′′p +
[
p2 + (m2 + (ξ − 1/6)R)C

]
Vp = 0

(R = 3C′′
C2 − 3

2
(C′)2
C3 the curvature scalar) satisfying the additional condition

VpV
′
p − Vp

′
Vp = i

That (A.1.1) indeed is a Greens operator can be seen by calculating its derivatives; one
gets for E+ using that for ϕ ∈ C∞0 (R):

1
C(η)

∂η

(
C(η)∂η

∫ η

−∞
Gp(η, λ)ϕ(λ)dλ

)
= 1
C(η)

∂η

(
C(η)Gp(η, η)︸ ︷︷ ︸

=0

ϕ(η)

+ C(η)
∫ η

−∞
∂ηGp(η, λ)ϕ(λ)dλ

)

=∂ηGp(η, λ)|λ=ηϕ(η) +
∫ η

−∞

(
C ′(η)
C(η)

∂ηGp(η, λ) + ∂ηηGp(η, λ)
)
ϕ(λ)dλ

=i
V ′p(η)Vp(η)− (Vp(η))Vp(η)

C(η)
ϕ(η)

+ i

∫ η

−∞

(
V ′′p (η)− R(η)C(η)

6 Vp(η)
)
Vp(λ)−

(
Vp
′′(η)− R(η)C(η)

6 Vp(η)
)
Vp(λ)√

C(η)C(λ)
. . .× ϕ(λ)dλ

=− ϕ(η)
C(η)

−
∫ η

−∞
(p2 + (m2 + ξR(η))C(η))Gp(η, λ)ϕ(λ)dλ
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the relation

(�+ξR+m2)
[
E+(f)

]
(η,x) = . . .

= − 1
(2π)3/2C(η)

∫
R3

1
C(η)

∂η

(
C(η)∂η

∫ η

−∞
Gp(η, λ)f̂(λ,p)C2(λ)dλ

−
[
p2 + (m2 + ξR(η))C(η)

] ∫ η

−∞
Gp(η, λ)f̂(λ,p)C2(λ)dλeipx

)
dp

= 1
(2π)3/2

∫
R3
f̂(η,p)eipxdp

=f(η,x)

and by an analogous computation also

(� + ξR+m2)
[
E−(f)

]
(η,x) = f(η,x)

Concerning the support properties, it is sufficient to establish that for x 7→ f(λ,x)
having support in the ball B(0, r), the function

x 7→ 1
(2π)3/2

∫
R3
Gp(η, λ)f̂(λ,p)eipxdp

has support in the ball B(0, r + |η − λ|).
By the Paley-Wiener-Schwartz theorem, p 7→ f̂(λ,p) is an entire function which

satisfies the growth estimate |f(ζ)| ≤ Mer|ζ| for a constant M > 0. This function is
now multiplied by Gp(η, λ), so we need analyticity properties and growth estimates for
Gp(η, λ), or equivalently

√
C(η)C(λ)Gp(η, λ).

For fixed λ and p ∈ R, the function Hp : η 7→
√
C(η)C(λ)Gp(η, λ) satisfies the

differential equation

H ′′p +
(
p2 +

(
m2 + ξR

)
C
)
Hp = 0 (A.1.2)

and has initial values
Hp(λ) = 0 H ′p(λ) = −1. (A.1.3)

Introducing ψp = H′p
1+|p| we can can rewrite the ODE for Hp as the system

(
H ′p
ψ′p

)
=
(

0 1 + |p|
−p2+(m2+(ξ−1/6)R)C

1+|p| 0

)(
Hp

ψp

)
(A.1.4)

On a compact interval [λ, η] the smooth function η′ 7→ (m2 + (ξ − 1/6)R(η′))C(η′) can
be bounded in modulus by a constant M1 and by explicitely calculating the spectral
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(operator) norm for the matrix appearing in (A.1.4) we get the bound:∥∥∥∥∥
(

0 1 + |p|
−p2+(m2+(ξ−1/6)R)C

1+|p| 0

)(
Hp

ψp

)∥∥∥∥∥
≤

√√√√max
{

(1 + |p|)2, |p
2 +M1|2

(1 + |p|)2

}∥∥∥∥∥
(
Hp

ψp

)∥∥∥∥∥ ≤ max
{

1, |p|
2

1 + |p|
+ M1

1 + |p|

}∥∥∥∥∥
(
Hp

ψp

)∥∥∥∥∥ ,
(A.1.5)

valid for all p ∈ C. Taking M1 ≥ 1, applying the Gronwall lemma to the absolute value
of the integral equation corresponding to (A.1.4) and using the initial conditions for Hp

and ψp = H′p
1+|p| we get

|Hp| ≤
∥∥∥∥∥
(
Hp

ψp

)∥∥∥∥∥ ≤ eM1e|p||η−λ|
∥∥∥∥∥
(

0
− 1

1+|p|

)∥∥∥∥∥ ≤ eM1e|p||η−λ| .

On the other hand, from the theory of ODEs we get that for fixed η the solution
of (A.1.2) with initial values (A.1.3) is an analytic function of p2 since the function
(ζ,H) 7→

(
ζ + (m2 + (ξ − 1/6)R(η))C(η)

)
H and the functions ζ 7→ 0 = H√

ζ
(λ), ζ 7→

−1 = H ′√
ζ
(λ) are analytic wrt. their arguments. Therefore, for fixed λ, η the function

p 7→ Gp(λ, η)f̂(λ,p) is again analytic and satisfies the required growth estimate so that

x 7→ 1
(2π)3/2

∫
R3

Gp(η, λ)f̂(λ,p)eipxdp

as its fourier-(back)-transform has the right support properties. Because of the Θ-(step)-
function appearing in the greens operator the support of E± is seen to be contained either
in the past or in the future of f .
From these representations of E± one directly reads of the operator E := E− −E+ as

[E(f)] (η,x) = 1
(2π)3/2

∫
R3

∫ ∞
−∞

Gp(η, λ)f̂(λ,p)C2(λ)dλeipxdp . (A.1.6)

A.2 A convergence result
Lemma A.1. Let ρ : R× R+ 3 (∆η, r) 7→ r2 − (∆η)2 and q : R× R+ → R be bounded
from below by 1/Qmax > 0. Then (r,∆η) 7→ log

((
ρ(r,∆η) + ε2

q(r,∆η)

)2
+ 4ε2 (∆η)2

q2(r,∆η)

)
converges in L1

loc to (r,∆η) 7→ log(ρ2(∆η, r)).

Proof. Let C ⊂ R × R+ bounded be given and let ε = min
{

1
8 sup(∆η,r)∈C(∆η)2 ,

1√
2

}
. To

proof the local L1 convergence we have to show

lim
ε→0

∫
C

∣∣∣∣ log
((

ρ(∆η, r) + ε2

q(∆η,r)

)2
+ 4ε2 (∆η)2

q2(∆η,r)

ρ2(∆η, r)

)∣∣∣∣drd∆η = 0 (A.2.1)

Consider now two cases:
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1. ρ(∆η, r) > 0 or |∆η| > ε
2 :(

ρ+ ε2

q

)2
+ 4ε2 (∆η)2

q2

ρ2 = 1 + ε2
(

2
ρq

+ 4(∆η)2 + ε2

ρ2q2

)
︸ ︷︷ ︸

x

For ρ > 0, x > 0 holds, for |∆η| > ε
2 we have

x ≥ ε2
(

2
ρq

+ 2ε2

(ρq)2

)
= 2ε2

(
1
ρq

+ ε2

(ρq)2

)
≥ −1

2

since 1
ξ + ε2

ξ2 ≥ −
1

4ε2 for all ξ ∈ R. Now for x ≥ −1
2 there holds |log(1 + x)| ≤

2 log(1+ |x|) ≤ 2 log(1+y) for all y such that y ≥ |x|. Using this, one can estimate

Rε :=

∣∣∣∣∣∣∣log
((

ρ+ ε2

q

)2
+ 4ε2 (∆η)2

q2

ρ2

)∣∣∣∣∣∣∣ ≤ 2 log
(

1 + ε2
(

2
|qρ|

+ 4(∆η)2 + ε2

|ρq|2

))

Taking the specific choice of ε and 1
q ≥ Qmax into account, this can be further

estimated as

Rε ≤2 log
(

1 + ε2
2Qmax
|ρ|

+ ε
1/2 + ε2

|ρ|2
Q2
max

)
≤ 2 log

(
1 + 2

√
εQmax
|ρ|

+ εQ2
max

|ρ|2

)

=4 log
(

1 +
√
εQmax
|ρ|

)
(A.2.2)

2. ρ(∆η, r) < 0 and |∆η| < ε/2:
Because of ρ(∆η, r) = r2 − (∆η)2 < 0 this implies r < |∆η| ≤ ε/2 and also
|ρ| ≤ −ε2/4. Using |log x| ≤ log(x+ 1/x) for all x ∈ R, by the estimate

(
ρ+ ε2

q

)2
+ 4ε2 (∆ε)2

q2

ρ2 + ρ2(
ρ2 + ε2

q2

)2
+ 4ε2 (∆η)2

q2

≤
ρ2 + ε4

q2 + ε4

q2

ρ2 + ρ2q2

4ε2(∆η)2

≤1 + 2ε4

ρ2 Q
2
max + Q2

maxε
2

64(∆η)2

we have

Rε ≤ log
(
64ρ2(∆η)2 + ε2Q2

max(128ε2(∆η)2 + ρ2)
)
− log

(
64ρ2(∆η)2

)
≤ log(ε6(1 +Q2

max(32 + 1/16)))− log
(
64ρ2(∆η)2

)
(A.2.3)
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A.3 A consequence of ANEC

Now split the integration range in (A.2.1) into the area C1 where 0 ≤ r ≤ |∆η| ≤ ε/2
and its complement C \ C1. Since the rhs. in (A.2.2) is strictly positive, the integral of
Rε over C \ C1 can be estimated as (ε̃2 :=

√
εQmax):∫

C\C1
Rε(∆η, r)drd∆η ≤4

∫ M

−M

∫ |∆η|
0

log
(

(∆η)2 − r2 + ε̃2

(∆η)2 − r2

)
drdη

+ 4
∫ M

−M

∫ ∞
|∆η|

log
(
r2 − (∆η)2 + ε̃2

r2 − (∆η)2

)
drdη

=8ε̃2
∫ 1

0

(∫ ∆η

0
log

(
(∆η)2 + 1− r2

(∆η)2 − r2

)
dr

+
∫ ∞
∆η

log
(
r2 + 1− (∆η)2

r2 − (∆η)2

)
dr
)

dη

+8ε̃2
∫ M/ε̃

1

(∫ ∆η

0
log

(
(∆η)2 + 1− r2

(∆η)2 − r2

)
dr

+
∫ ∞
∆η

log
(
r2 − (∆η)2 + 1
r2 − (∆η)2

)
dr
)

dη

=8ε̃2
∫ 1

0
F1(∆η)dη + 8ε̃2

∫ M/ε̃

1
F2(∆η)dη

where

F1(∆η) = 2
(√

1− (∆η)2 arccos(∆η) +
√

1 + (∆η)2 Arsinh(∆η)
)

F2(∆η) = 2
√

1 + (∆η)2 Arsinh(∆η)− 2∆η log(2∆η)

Since both F1 and F2 are bounded in the regions they are integrated over, the convergence
of the integral of Rε over C \ C1 to 0 follows.
Setting C̃1 := 6 log(32 + 1/16), C̃2 = 3 log(64) from (A.2.3) one has

Rε ≤ C̃1 log(ε) + C̃2|log(|ρ|)|

Now since∫
C1
Rε(∆η, r) = 2

∫ ε/2

0

∫ ∆η

0
log(η2−r2)drdη = 2

∫ ε/2

0
2η log(2η)−2ηdη = 1

4
ε2 log(ε)− 3

8
ε2

the second integral also converges to zero for ε→ 0 and this shows the L1
loc convergence.

A.3 A consequence of ANEC
We will present a result on real-valued solutions θ(t) of the differential equation

θ′(t) + µθ(t)2 = −f(t) , t ∈ R , (A.3.1)
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where µ > 0 and f ∈ C1(R,R), with initial condition

θ(0) = θ0 . (A.3.2)

It follows from the Picard-Lindelöf Theorem that there is an open interval (a, b) con-
taining 0, which may be finite, semi-finite or infinite (i.e. coinciding with R), such that
this interval is the domain of the unique, inextensible C1 solution θ of (A.3.1) satisfying
the initial condition. In this case, we call θ the maximal solution of (A.3.1) defined by
the initial condition, and refer to (a, b) as the maximal domain.
The following statement is a variation on a similar result in [WY91], and it uses a very

similar argument, the main difference being that the assumption (A.3.3) here is slightly
different from that in [WY91], where the integral is taken over a semi-axis. Note also
that our parameter λ corresponds to 1/λ in the notation of [WY91].

Theorem A.2. Suppose that f ∈ C1(R,R) has the property

lim sup
λ→0

∫ ∞
−∞

f(t)η(λt) dt ≥ 0 (A.3.3)

for the function η(t) = (1− t2)4 for |t| < 1, η(t) = 0 for |t| ≥ 1.
Then either the maximal domain of θ coincides with all of the real axis and θ(t) = 0

for all t ∈ R, or the maximal domain (a, b) of θ is a finite or semi-finite interval. In
this case, θ(t) → ∓∞ for t approaching the finite boundary at the right/left side of the
maximal domain (in the finite case this holds with the respective sign for both boundaries).
In particular, this is the case if θ(t0) 6= 0 for some t0 in the maximal domain of θ.

Proof. Consider the auxiliary differential equation

u′′(t) + f(t)
µ
u(t) = 0 (A.3.4)

For the initial values u(0) = 1, u′(0) = θ0 and the given f this linear differential equa-
tion has by the Picard-Lindelöf Theorem a unique, global solution u ∈ C2(R,R). Fur-
thermore, this solution is nonzero in some neighbourhood of 0. For points from this
neighbourhood, one can then rewrite (A.3.4) as

d
dt

(
u′(t)
u(t)

)
+
(
u′(t)
u(t)

)2
= −f(t)

u(t)

which implies that θ̂(t) ≡ u′(µt)
u(µt) fulfills equation (A.3.1). Furthermore, θ̂ also satisfies

the initial condition (A.3.2) and by the uniqueness part in the Picard Lindelöf Theorem
it therefore agrees with θ. This however implies that the only way in which θ can fail
to be C1 at a boundary point c = a or c = b of a semi-finite interval is a zero of u
at µc. At this zero u′ has to differ from zero, otherwise u as a C2-solution to (A.3.4)
with initial conditions u(µc) = 0, u′(µc) = limx→µc u

′(x) = 0 would be identically zero
in contradiction to the initial values for u at 0. By continuity, u′ is therefore nonzero
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in a neighbourhood of µc, and by (A.3.1), θ(t) = u′(µt)
u(µt) approaches the value −∞ for

t → c, t < c (right boundary point) or the value +∞ for t → c, t > c (left boundary
point). For proving that θ diverges at the boundary (boundaries) of a semi-finite interval
it is therefore sufficient to show that θ cannot be continued as a C1 function beyond this
boundary.
With the definition of η as above, and provided that the maximal domain of θ coincides

with all of R, one has for 0 < λ < 1,∫ ∞
−∞

θ′(t)η(λt) dt. =
∫ ∞
−∞

θ(t)λη′(λt) dt

=− 8λ
∫ 1/λ

−1/λ
θ(t)(λt)(1− (λt)2)3 dt

≥− 8λ
∫ 1/λ

−1/λ
|θ(t)| (1− (λt)2)2 dt

owing to the fact that both |λt| and |(1 − (λt)2)| are bounded by 1 on the domain of
integration. Combining this with (A.3.1) and (A.3.3) leads to

lim sup
λ→0

−8λ
∫ 1/λ

−1/λ
|θ(t)|(1− (λt)2)2 dt+ µ

∫ 1/λ

−1/λ
θ(t)2(1− (λt)2)4 dt ≤ 0 . (A.3.5)

Using also the Cauchy-Schwarz inequality

∫ 1/λ

−1/λ
|θ(t)|(1− (λt)2)2 dt ≤

(∫ 1/λ

−/λ
θ(t)2(1− (λt)2)4 dt

)1/2(∫ 1/λ

−1/λ
1 dt

)1/2

,

the estimate (A.3.5) can be replaced by

lim sup
λ→0

− 8
µ

√
2λ
(∫ 1/λ

−1/λ
θ(t)2(1− (λt)2)4 dt

)1/2

+
∫ 1/λ

−1/λ
θ(t)2(1−(λt)2)4 dt ≤ 0 , (A.3.6)

which shows that
∫∞
−∞ θ(t)2 dt = 0 upon using Levi’s theorem. Since θ is C1, this implies

that θ(t) = 0 for all t.
We have therefore shown that the assumption of θ being C1 on all of R implies θ(t) = 0

for all t ∈ R; if on the other hand θ is C1 only on a maximal finite or semi-finite interval,
then by the statement in the first paragraph of the proof, it will diverge at the finite
boundaries of this interval in the indicated way.

A.4 Asymptotics of Laplace-type integrals
Lemma A.3. Let Ω : R → [1/m,∞[, m > 0, z ∈ Hr := {z ∈ C | Re (z) > 0} and the
asymptotic behaviour of Ω for p→∞ be given by:

Ω(p) =
N∑

k=−d

ak
pk

+O
( 1
pN+1

)
(A.4.1)
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Then for L > 0, z ∈ Hr,
∫∞
0 e−pzΩ(t)dp can be written as

∫ ∞
0

e−pzΩ(p) dp =
d∑

k=0

k!a−k
zk+1 − EN−1(z) ln

(
z

L

)
+ R̃

(N−1)
Ω,L (z)

EN−1(z) =
N−1∑
k=0

(−z)kak+1
k!

Here, R̃(N−1)
Ω,L is an analytic functions on Hr, such that the limit ε → 0 of the function

R
(N−1)
Ω,L,ε : R 3 r 7→ R̃

(N−1)
Ω,L (ε+ir) in the sense of distributions is given by a CN−1-function

R
(N−1)
Ω,L with asymptotic expansion

R
(N−1)
Ω,L (r) =

N−1∑
l=0

Rl
(−ir)l

l!
+ o(rN−1)

Rl = lim
M→∞

∫ M

0
pl

Ω(p)−
d∑
j=0

a−jp
j

dp−
l∑

j=1

al+1−j
j

M j − al+1 log(ML)


+ al+1

(
− γ +

l∑
n=1

1
n

)
.

Proof. Using first that for k ∈ N0 ∫ ∞
0

pke−pz = k!
zk+1

the integral
∫∞
0 e−pzΩ(p)dp can be written for z 6= 0 as

∫ ∞
0

e−pzΩ(p)dp =
d∑

k=0

k!a−k
zk+1 +

∫ ∞
0

e−pzΩ̃(p)dp (A.4.2)

where by (A.4.1) the function Ω̃(p) = Ω(p)−
∑d
k=0 a−kp

k has the asymptotic expansion

Ω̃(p) =
N∑
k=1

ak
pk

+O
( 1
pN+1

)

To obtain the claimed splitting of the remaining integral
∫∞
0 e−pzΩ̃(p)dp consider the

term

I(z) =
N−1∑
k=0

ak+1
k!

(−z)k
(∫ 1/L

0

e−pz − 1
p

dp+
∫ ∞
1/L

e−pz
dp
p

)

On the one hand, using the analyticity of p 7→ e−pz−1
p , p 7→ 1

p and p 7→ e−pz

p for p such
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that Re (p) > 0, we have for z with Re (z) > 0⇒ Re
(1
z

)
> 0:

∫ 1/L

0

e−pz − 1
p

dp+
∫ ∞
1/L

e−pz
dp
p

=
∫ 1/z

0

e−pz − 1
p

dp+
∫ 1/L

1/z
e−pz

dp
p
−
∫ 1/L

1/z

dp
p

−
∫ ∞
1/z

e−pz
dp
p

+
∫ 1/z

1/L
e−pz

dp
p

=
∫ 1/z

0

e−pz − 1
p

dp+
∫ ∞
1/z

e−pz
dp
p
− log

(
z
L

)
=
∫ 1

0

e−p − 1
p

dp+
∫ ∞
1

e−p
dp
p
− log

(
z
L

)
=− γ − log

(
z
L

)
(this is true as long as the branch-cut of the logarithm is chosen to lie in the left half-
plane; in the following it will be taken to lie on the negative real axis). Defining EN−1(z)
by

EN−1(z) =
N−1∑
k=0

ak+1
k!

(−z)k

we have
I(z) = −EN−1

(
γ + log

(
z
L

))
On the other hand by induction one proves for k ∈ N

(−z)k

k!

(∫ 1/L

0

e−pz − 1
p

dp+
∫ ∞
1/L

e−pz
dp
p

)
=
∫ 1/L

0

e−pz −
∑k
j=0

(−pz)j
j!

pk+1 dp

+
∫ ∞
1/L

e−pz

pk+1 dp− L (−z)k−1

k!

k−1∑
j=0

j+1∑
l=0

j!
l!

(
− z
L

)l−j
(A.4.3)

Using furthermore

1
k!

l∑
j=0

(j + k − 1− l)!
j!

= 1
k − l

1
l!

for k, s ∈ N, s ≤ k − 1, the last term of (A.4.3) can be written as

L
(−z)k−1

k!

k−1∑
j=0

j+1∑
l=0

j!
l!

(
− z
L

)l−j
=
k−1∑
l=0

Lk−l

k!
(−z)l

l∑
j=0

(j + k − 1− l)!
j!

+ (−z)k

k!

k−1∑
j=0

1
j + 1

=
k−1∑
l=0

Lk−l(−z)l

(k − l)l!
+ (−z)k

k!

k−1∑
j=0

1
j + 1
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so I(z) can alternatively be expressed as

I(z) =
N−1∑
k=0

ak+1

(∫ 1/L

0

e−pz −
∑k
j=0

(−pz)j
j!

pk+1 dp+
∫ ∞
1/L

e−pz

pk+1 dp−
k−1∑
l=0

Lk−l(−z)l

(k − l)l!

− (−z)k

k!

k−1∑
j=0

1
j + 1

)

Using the above,
∫∞
0 e−pzΩ̃(p)dp can be written as∫ ∞

0
e−pzΩ̃(p)dp =

∫ ∞
0

e−pzΩ̃(p)dp− I(z) + I(z)

=
∫ ∞
1/L

(
Ω̃(p)−

N−1∑
k=0

ak+1
pk+1

)
e−pzdp︸ ︷︷ ︸

I2(z)

+
N−1∑
k=0

ak+1

k−1∑
l=0

Lk−l(−z)l

(k − l)l!

+
∫ 1/L

0
Ω̃(p)e−pz −

N−1∑
k=0

ak+1
e−pz −

∑k
j=0

(−pz)j
j!

pk+1 dp︸ ︷︷ ︸
I3(z)

+
N−1∑
k=0

(−z)k

k!
ak+1

k∑
j=1

1
j
− EN−1(z)

(
log

(
z
L

)
+ γ

)
We can now identify R̃(N−1)

L,Ω (z) as

R̃
(N−1)
L,Ω (z) = I2(z) + I3(z) +

N−1∑
k=0

ak+1

k−1∑
l=0

Lk−l(−z)l

(k − l)l!
+
N−1∑
k=0

(−z)k

k!
ak+1

k∑
j=1

1
j
− γEN−1(z)

Setting z = ir+ ε and integrating against an h ∈ C∞0 (R), the last three sums, which are
just polynomials in z, will go to the integrals obtained by setting z = ir in the integrand,
so only the integrals I2 and I3 have to be discussed. For these we have∫

R
I2(ε+ ir)h(r)dr =

∫
R

∫ ∞
1/L

(
Ω̃(p)−

N−1∑
k=0

ak+1
pk+1

)
e−pε−iprdp h(r)dr

∫
R
I3(ε+ ir)h(r)dr =

∫
R

∫ 1/L

0
Ω̃(p)e−pε−ipr −

N−1∑
k=0

ak+1
e−pε−ipr −

∑k
j=0

(−pε−ipr)j
j!

pk+1 dp

. . .× h(r)dr .

Since, by assumption, Ω̃(p)−
∑N−1
k=0

ak+1
pk+1 is in O

(
p−(N+1)

)
, the limit can be performed

under the integral in I2 by majorized convergence; since w 7→
e−w−

∑k

j=0
(−w)j
j!

wk+1 =: ek+1(w)
is an analytic function of w and thus bounded on any bounded set and in I3 the p-
integral extends only over the interval [0, 1/L], while the r-integral is only over the
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compact support of h, also there we can perform the limit under the integral by majorized
convergence and obtain

R
(N−1)
L,Ω (r) = R̃

(N−1)
L,Ω (ir)

Looking at the expressions for I2(ir) and I3(ir), using Ω̃(p)−
∑N−1
k=0

ak+1
pk+1 ∈ O

(
p−(N+1)

)
and the analyticity of the ek+1 once more, we see that we can even differentiate N − 1-
times wrt. r under the integral and still obtain r-independent, convergent majorants,
so by the criterion for differentiable dependence of integrals on parameters, we get that
R

(N−1)
L,Ω is in fact CN−1. Concerning the original R̃(N−1)

L,Ω for arguments in Hr, using the
same majorants and the fact that the integrands are analytic functions of z we get the
analyticity statement on Hr.
To calculate the asymptotics for small r, one writes the z-dependent exponentials in

I2(ir) and I3(ir) as

e−ipr =
N−1∑
l=0

(−ipr)l

l!
+ e−ipr −

N−1∑
l=0

(−ipr)l

l!︸ ︷︷ ︸
=(ipr)NeN (ipr)

For r, p such that 0 < p < 1/L and |r| < M for someM ∈ R, p 7→ pNeN (ipr) is bounded,
so

I3(ir) =
N−1∑
l=0

(−ir)l

l!

∫ 1/L

0
plΩ̃(p)dp−

N−1∑
k=0

ak+1

N−1∑
l=k+1

(−ir)l

l!

∫ 1/L

0
pl−k−1dp

+(ir)N
∫ 1/L

0
pNeN (ipr)dp− (ir)N

N−1∑
k=0

ak+1

∫ 1/L

0
pN−k−1eN (p)dp ,

which shows

I3(ir) =
N−1∑
l=0

(−ir)l

l!

∫ 1/L

0
plΩ(p)dp−

N−1∑
k=0

ak+1

N−1∑
l=k+1

(−ir)l

l!

∫ 1/L

0
pl−k−1dp+O(rN ) .

(A.4.4)
For w ∈ R with |w| > 1 we have

|w eN (w)| ≤ 1 +
N−1∑
l=0

1
l!
.

Together with the boundedness of w 7→ eN (w) for |w| < 1 this implies that p 7→
irpeN (irp) is bounded for r ∈ R, p ≥ 1/L and goes to zero for r → 0 and fixed p.
For I2 this implies

I2(ir) =
N−1∑
l=0

(−ir)l

l!

∫ ∞
1/L

pl
(

Ω̃(p)−
N−1∑
k=0

ak+1
pk+1

)
dp

+ (ir)N−1
∫ ∞
1/L

pN−1eN (pir)
(

Ω̃(p)−
N−1∑
k=0

ak+1
pk+1

)
dp
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and by dominated convergence the last integral goes to zero for r → 0 which establishes

I2(ir) =
N−1∑
l=0

(−ir)l

l!

∫ ∞
1/L

pl
(

Ω̃(p)−
N−1∑
k=0

ak+1
pk+1

)
dp+ o(rN−1)

Together this yields

R
(N−1)
Ω,L (r) =

N−1∑
l=0

(−ir)l

l!

∫ ∞
1/L

plΩ̃(p)−
N−1∑
k=0

ak+1p
l−k−1dp

+
N−1∑
k=0

ak+1

k−1∑
l=0

Lk−l(−ir)l

(k − l)l!

+
N−1∑
l=0

(−ir)l

l!

∫ 1/L

0
Ω̃(p)pldp−

N−1∑
k=0

ak+1

N−1∑
l=k+1

(−ir)l

l!

∫ 1/L

0
pl−k−1 dp

+
N−1∑
k=0

(−ir)k

k!
ak+1

k∑
j=1

1
j

+ o(rN−1) (A.4.5)

The first summand can be split as

N−1∑
l=0

(−ir)l

l!

∫ ∞
1/L

plΩ̃(p)−
N−1∑
k=0

ak+1p
l−k−1dp

= lim
M→∞

[
N−1∑
l=0

(−ir)l

l!

∫ M

1/L
plΩ̃(p)dp+

N−1∑
k=0

ak+1

k−1∑
l=0

Lk−l(−ir)l

(l − k)l!

−
N−1∑
l=0

al+1
l!

(−ir)l log(ML)−
N−1∑
k=0

ak+1

N−1∑
l=k+1

(
M l−k − Lk−l

)
(−ir)l

(l − k)l!

]

Inserting this into (A.4.5) we get

R
(N−1)
Ω,L (r) = lim

M→∞

[
N−1∑
l=0

(−ir)l

l!

∫ M

0
plΩ̃(p)dp−

N−1∑
l=0

al+1
l!

(−ir)l log(ML)

−
N−1∑
k=0

ak+1

N−1∑
l=k+1

M l−k(−ir)l

(l − k)l!

]

+
N1∑
l=0

al+1
l!

(−ir)l
l∑

j=1

1
j

= lim
M→∞

[
N−1∑
l=0

(−ir)l

l!

(∫ M

0
plΩ̃(p)dp−

l−1∑
k=0

ak+1M
l−k

l − k

− al+1 log(ML)
)]

+
N1∑
l=0

al+1
l!

(−ir)l
l∑

j=1

1
j
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so defining

Rl = lim
M→∞

(∫ M

0
plΩ̃(p)dp−

l∑
k=1

al+1−k
k

Mk − al+1 log(ML)
)

+ al+1

(
− γ +

l∑
j=1

1
j

)

we have the claimed asymptotic expansion for R(k−1)
Ω,L .
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B Table of symbols

Symbol Description Page
:φ1 . . . φn :SHP SHP Wick product (normal order wrt. GSHP

k ) 17
�g Wave operator gab∇a∇b 12
o
� Pseudo Minkowski wave operator ∂ηη − ∂xx − ∂yy − ∂zz 79
∇ Levi-Civita connection associated to g 12
A(M, g) Algebra of the Klein-Gordon field on (M, g) 12
αe0t Time translation automorphism for inertial observer on

Minkowski spacetime
37

β,β = βe0 Inverse temperature 1
kBT

; four-vector encoding inverse
temperature and rest-frame.

38

ck Coefficients in the concrete construction of Ω(), Ω(η) and
Ω(ηη′) as a sum of terms (A+ p2)−(k+1/2)

102

Cab Renormalization ambiguity of T ren
ab 56

c0,m, c2,m Constants giving the difference between ordinary and
SHP Wick products on Minkowski spacetime

49

Ck(M), C∞(M),
C∞0 (M)

k-times differentiable, smooth and compactly supported,
smooth functions on M

11

C Squared scale factor, expressed in conformal time 21
ð Balanced derivative 43
D, D′ Modified derivatives wrt η respectively η′; D = ∂η+ C′(η)

2C(η) 34
Dηη′ Conformal factor

√
C(η)

√
C(η′) 34

∆1/2, vj Functions defining the Hadamard parametrix 15
o
∆1/2, ovj Corresponding functions, calculated as in flat spacetime

but with “time-dependent mass”
79

E(3) Symmetry group of euclidean space 21
εωab(x) Thermal stress tensor of LTE-state ω at x ∈M 51
E± Retarded and advanced Greens operators 12
E Commutator distribution 12
expx Exponential map at x ∈M 14
φ(f) Klein-Gordon field 12
Φ[M, g] Locally covariant quantum field on (M, g) 17
Gk, Gsk Hadamard parametrix, its symmetric part 15
H

(1)
ν Hankel functions (of the first kind) 98
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B Table of symbols

Symbol Description Page
Î =]ηi, ηf [ Range of the global, conformal time 20
J± (·) Past/future set 12
K()(p), K(η)(p),
K(ηη′)(p)

Integral kernels of the state-dependent part of the covari-
ant expectation values

94

Lβ′(x),Lβ′(N) Set of S(2)
x resp. S

(2)
N -thermal states with inverse local

temp. bounded below by β′
59

l̃o· Restriction of [log(σ̃+)]s − log(q̃) to η = η′ 29
Mk[f ] k-th moment of function h ∈ S 42
(M, g) Spacetime manifold with Lorentzian metric tensor g 11
MRW(Î , C) Robertson Walker spacetime with range Î of the confor-

mal time and squared scale-factor C
21

µg Measure on (M, g) induced by g 11
Nτ2 , ρµ2,µ4 Rapidly decreading functions appearing in the construc-

tion of LTE-states
109

Pω(ε), P ren
ω (ε) Transition probability of detector, renormalized transi-

tion probability
41

Pkω k-th moment of (ren.) transition probability as fct. of
energy difference

43

Pm,ξ Klein-Gordon operator �g +m2 + ξR 12
o
Pm,ξ Corresponding operator on functions with conformal fac-

tor
81

Qm,ξ “Time dependent mass” (m2 + (ξ − 1/6)R)C appearing
in the differential equation for Vp

31

P
()
0 , P (ηη′)

−1 , P (−1)
0 Prefactors of the 1

r2+
and 1

r4+
-terms in [Gsk]η=η′ and

[DD′Gsk]η=η′

86

Q
()
j , Q

(η)
j , Q(ηη′)

j Prefactors of the logarithmic terms in [Gsk]η=η′ , [DGsk]η=η′
and [DD′Gsk]η=η′

86

q Deviation of σ from ρ 23
q(x, v;β′),
q0/1(γ, η, β′)

Lower bounds in the QWEIs 60

Rab Ricci tensor corresponding to ∇ 12
R Curvature scalar Raa 12
R∆ Part of ∆1/2 that contributes to expectation values on

Robertson Walker spacetimes
79

Rv Term appearing in the construction of v(k) on Robertson
Walker spacetimes, disappears in coincidence limits

79

1
r2+

, 1
r4+

Restrictions of
[
q̃
σ̃+

]s
respectively ∂η∂η′

[
q̃
σ̃+

]s
to η = η′. 26
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Symbol Description Page
R

()
Gk , R

(η)
Gk , R

(ηη′)
Gk Finite remainder of Hadamard-parametrix when re-

stricted to η = η′
86

R(), R(η), R(ηη′) Difference between restricted Hadamard parametrix and
its corresponding integral representations

92

ρ, Pseudo Minkowski distance ρ = x2 − (η − η′)2 22
Sx Space of local, thermal observables at point x 39
S

(n)
x Space generated by first n balanced derivatives 50
σ, σε Signed squared geodesic separation; regularized 14[

1
σ+

]s
, [log(σ+)]s Symmetric part of regularized term 1

σ and log(σ) 25
T ren
ab (x) Renormalized stress-energy tensor 57
TxM Tangent space at x ∈M 14
T Time-function 12
ϑω(x) (Function of) the local temperature in LTE-state ω at

point x
51

Vp Mode function 31
V

(k)
p Adiabatic vacua-like mode function 96
vp Modulus of mode function 117
ψ Digamma function 103
ω (General) state on A(M, g) 13
ωβ KMS-state at inverse temperature βaβa; rest-frame βa

βaβa
38

ωini Initial state used in the construction of LTE-states 109
W(M, g) Enlarged algebra of the Klein-Gordon field containing e.g.

Wick products
16

W ω
n n-point function of the state ω 13

W ω,s
2 Symmetric part of the two-point function 13

W̃Ω,+, WΩ,ε (Symmetry reduced) distributions corresponding to
[Gsk]η=η′ , etc.

89

ŵ(), ŵ(η), ŵ(ηη′) Fourier-transform of the symmetry reduced restrictions
of W ω,s

2 , DW ω,s
2 and DD′W ω,s

2 to η = η′
35

Ξ Function encoding the deviation of a state from a pure
state

34
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